精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=(log2x)2﹣2alog2x+b(x>0).当x= 时,f(x)有最小值﹣1.
(1)求a与b的值;
(2)求满足f(x)<0的x的取值范围.

【答案】
(1)

解:f(x)=(log2x)2﹣2alog2x+b= +b﹣a2(x>0),

当x= 时,f(x)有最小值﹣1,

,解得:


(2)

解:由(1)得:f(x)=(log2x)2+4log2x+3,

f(x)<0即(log2x+3)(log2x+1)<0,

解得: <x<


【解析】(1)利用配方法,结合x= 时,f(x)有最小值﹣1,建立方程组,即可求a与b的值;(2)f(x)<0即(log2x)2+4log2x+3<0,即可求出x的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,A1 , B1分别是边BA,CB的中点,A2 , B2分别是线段A1A,B1B的中点,…,An , Bn分别是线段 的中点,设数列{an},{bn}满足:向量 ,有下列四个命题,其中假命题是(
A.数列{an}是单调递增数列,数列{bn}是单调递减数列
B.数列{an+bn}是等比数列
C.数列 有最小值,无最大值
D.若△ABC中,C=90°,CA=CB,则 最小时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当向量 = =(﹣2,2), =(1,0)时,执行如图所示的程序框图,输出的i值为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于AB两点.

(1)若直线l的倾斜角为60°,求|AB|的值;

(2)|AB|=9,求线段AB的中点M到准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的图象可能是(

A.(1)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣alnx(a∈R).
(1)若曲线f(x)在(1,f(1))处的切线与直线y=﹣x+5垂直,求实数a的值.
(2)x0∈[1,e],使得 ≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.

(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义行列式运算 =a1b2﹣a2b1 , 将函数f(x)= 的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:

玩具名称

工时(分钟)

5

7

4

利润(元)

5

6

3

(Ⅰ)用每天生产种玩具个数种玩具表示每天的利润(元);

(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案