精英家教网 > 高中数学 > 题目详情
19.设log29=a,log35=b,用a,b的代数表示lg2=$\frac{2}{2+ab}$.

分析 log29=a,log35=b,可得$\frac{lg3}{lg2}$=$\frac{a}{2}$,$\frac{lg5}{lg3}$=b.化简代入即可得出.

解答 解:∵log29=a,log35=b,∴$\frac{lg3}{lg2}$=$\frac{a}{2}$,$\frac{lg5}{lg3}$=b.
∴1-lg2=lg5=b×$\frac{a}{2}$lg2,
解得lg2=$\frac{2}{2+ab}$.
故答案为:$\frac{2}{2+ab}$.

点评 本题考查了对数的运算性质、换底公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.对任意的实数R,集合A={x|x2+x-6>0},B={-1,0,1,2,3,4}.则B∩∁RA=(  )
A.{2,3,4,5}B.{-1,0}C.{-1,0,1,2}D.{ 2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下面几个函数:(1)y=x-3,(2)y=x2,(3)$y={x^{\frac{4}{3}}}$,(4)y=3x,(5)y=log0.3x其中是奇函数的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上一点M到左焦点F1的距离是2,N是MF1的中点,O为坐标原点,则|ON|的值为(  )
A.4B.8C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=2x和g(x)=x3的图象的示意图如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},则a+b=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x2-mx+1的两个零点分别在区间(0,1)和(1,2),则实数m的取值范围(2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.上海市复兴高级中学二期改扩建工程于2015年9月正式开始,现需要围建一个面积火900平方米的矩形地场地的围墙,有一面长度为20米的旧墙(图中斜杠部),有甲、乙两种维修利用旧墙方案.
甲方案:选取部分旧墙(选取的旧墙的长度设为x米,x∈(0,20]),维修后单独作为矩形场地的一面围墙(如方案①图),多余部分不维修;
乙方案:旧墙全部利用维修后,再续建一段新墙(新墙的长度高x米),共同作为矩形场地的一面(如方案②图)
已知旧墙维修费用为10元/米,新墙造价为80元/米,设修建总费用y.
(1)如果按甲方案修建,试用解析式将修建总费用y1表示成关于x的函数;
(2)如果按乙方案修建,试用解析式将修建总费用y2表示成关于x的函数;
(3)试求出两种方案中修建总费用y1,y2的最小值,并比较哪种方案最节省费用?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式3x2-7x-10≥0的解集是{x|x≥$\frac{10}{3}$或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的三边AB、BC、CA所在的直线方程分别是5x-y-12=0,x+3y+4=0,x-5y+12=0.求:
(1)经过点C且到原点的距离为7的直线方程;
(2)BC边上的高所在的直线方程.

查看答案和解析>>

同步练习册答案