精英家教网 > 高中数学 > 题目详情

已知函数).
(1)当时,求证:上单调递增;
(2)当时,求证:.

(1)证明如下(2)证明如下

解析试题分析:解:(1)


递减,在递增

上单调递增
(2)

此时
时,由(1)可知


时,单调递增


上单调递增,上单调递减


得证.
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,函数
(1)若是函数的极值点,求的值;
(2)在(1)的条件下,求函数在区间上的最值.
(3)是否存在实数,使得函数 在上为单调函数,若是,求出的取值范围,若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知时有极大值6,在时有极小值,求的值;并求在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若对一切恒成立,求的取值范围;
(2)在函数的图像上取定两点,记直线 的斜率为,证明:存在,使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在极值,求的取值范围;
(2)若,问是否存在与曲线都相切的直线?若存在,判断有几条?并求出公切线方程,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设,试比较的大小;
(2)是否存在常数,使得对任意大于的自然数都成立?若存在,试求出的值并证明你的结论;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若曲线在点处的切线方程为,求函数的解析式;
(2)讨论函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若p=2,求曲线处的切线方程;
(2)若函数在其定义域内是增函数,求正实数p的取值范围;
(3)设函数,若在[1,e]上至少存在一点,使得成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交3元的管理费,预计当每件产品的售价为元(∈[7,11])时,一年的销售量为万件.
(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.

查看答案和解析>>

同步练习册答案