精英家教网 > 高中数学 > 题目详情

【题目】某同学计划用他姓名的首字母,身份证的后4位数字(4位数字都不同)以及3个符号设置一个六位的密码.若必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为(

A.864B.1009C.1225D.1441

【答案】D

【解析】

先按照符号的个数分类,利用分步乘法计数原理分别计算每类的情况种数,再利用分类加法计数原理求解即可.

①当符号的个数为0时,六位密码由字母及身份证的后4位数字组成,此时只有1种情况;

②当符号的个数为1时,六位密码由母3个数字及1个符号组成.

若末位是符号,则首位是字母,可能的种数为

若末位是字母,则可能的种数为

③当符号的个数为2时,六位密码由字母2个数字及2个符号组成.

若首位和末位均为符号,则可能的种数为

若首位和末位均为字母,则可能的种数为

若首位和末位一个是字母、一个是符号,则可能的种数为.

故他可设置的密码的种数为.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,直线过椭圆的左焦点.

1)求椭圆的标准方程;

2)若直线轴交于点是椭圆上的两个动点,的平分线在轴上,.试判断直线是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某地区小学的期末考试中抽取部分学生的数学成绩,由抽查结果得到如图的频率分布直方图,分数落在区间内的频率之比为

1)求这些学生的分数落在区间内的频率;

2)若将频率视为概率,从该地区小学的这些学生中随机抽取3人,记这3人中成绩位于区间内的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足n≥2时,,则称数列(n)L数列

1)若,且L数列,求数列的通项公式;

2)若,且L数列为递增数列,求k的取值范围;

3)若,其中p1,记L数列的前n项和为,试判断是否存在等差数列,对任意n,都有成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,其焦点到准线的距离为2.直线与抛物线交于两点,过分别作抛物线的切线交于点.

1)求抛物线的标准方程;

2)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点是棱的中点.

1)求证:平面

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国瓷器的历史上六棱形的瓷器非常常见,因为六,八是中国人的吉利数字,所以好多器都做成六棱形和八棱形,数学李老师有一个正六棱柱形状的笔筒,底面边长为6cm,高为18cm(底部及筒壁厚度忽略不计),一长度为cm的圆铁棒l(粗细忽略不计)斜放在笔筒内部,l的一端置于正六柱某一侧棱的展端,另一端置于和该侧棱正对的侧棱上.一位小朋友玩耍时,向笔筒内注水,恰好将圆铁棒淹没,又将一个圆球放在笔筒口,球面又恰好接触水面,则球的表面积为_____cm2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD为直角梯形,,且平面平面ABCD.

1)求证:

2)在线段PA上是否存在一点M,使二面角M-BC-D的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

同步练习册答案