精英家教网 > 高中数学 > 题目详情
6.已知正项等比数列{an}中,Sn为其前n项和,a1=2,a2+a3=12,则S5=32.

分析 根据等比数列的通项公式结合求和公式进行计算即可.

解答 解:设等比数列的公比为q,则q>0,
由a1=2,a2+a3=12得2q+2q2=12,
即q2+q-6=0得q=2或q=-3,(舍),
则S5=$\frac{{a}_{1}(1-{q}^{5})}{1-q}$=$\frac{2×(1-{2}^{5})}{1-2}$=62,
故答案为:62.

点评 本题主要考查等比数列的应用,根据等比数列的通项公式和前n项和公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆A:(x+1)2+y2=8,动圆M经过点B(1,0),且与圆A相切,O为坐标原点.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)直线l与曲线C相切于点M,且l与x轴、y轴分别交于P、Q两点,求证:$\overrightarrow{OM}$•$\overrightarrow{PQ}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a>0,已知函数$f(x)=\sqrt{x}-ln(x+a)$(x>0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)试判断函数f(x)在(0,+∞)上是否有两个零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$a={3^{0.2}},b={log_π}3,c={log_3}cos\frac{{\sqrt{2}}}{4}π$,则a,b,c关系正确的是(  )
A.b>a>cB.a>b>cC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设 $a=ln\frac{1}{2},b={2^{\frac{1}{e}}},c={e^{-2}}$,则(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.

(I)求证:CE⊥平面A1BCD1
(II)求异面直线BD1与A1E所成角的大小;
(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平行四边形ABCD中,若$|{\overrightarrow{AB}-\overrightarrow{AD}}|=|{\overrightarrow{AB}+\overrightarrow{AD}}|$,则平行四边形ABCD是(  )
A.矩形B.梯形C.正方形D.菱形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,“A<30°”是“$sinA<\frac{1}{2}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数字1,2,3,…,n(n≥2)的任意一个排列记作(a1,a2,…,an),设Sn为所有这样的排列构成的集合.集合An={(a1,a2,…,an)∈Sn|任意整数i,j,1≤i<j≤n,都有ai+i≤aj-j};集合Bn={(a1,a2,…,an}∈Sn|任意整数i,j,1≤i<n,都有ai+i≤aj+j}.
(Ⅰ)用列举法表示集合A3,B3
(Ⅱ)求集合An∩Bn的元素个数;
(Ⅲ)记集合Bn的元素个数为bn.证明:数列{bn}是等比数列.

查看答案和解析>>

同步练习册答案