精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xoy中,设点,直线l:,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
( I) 求动点Q的轨迹的方程C;
( II) 设圆M过A(1,0),且圆心M在曲线C上,设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时弦长|TS|是否为定值?请说明理由.
【答案】分析:( I) 判断动点Q的轨迹E是以F为焦点,l为准线的抛物线,即可得到抛物线的方程;
( II)M到y轴的距离为d=|x|=x,求出圆的半径,即可表示出弦长|TS|,利用M(x,y)∈C,即可得到结论.
解答:解:( I) 依题意知,直线l的方程为:.…(2分)
∵点R是线段FP的中点,且RQ⊥FP,∴RQ是线段FP的垂直平分线.…(4分)
∴|PQ|是点Q到直线l的距离.
∵点Q在线段FP的垂直平分线,∴|PQ|=|QF|.…(6分)
故动点Q的轨迹E是以F为焦点,l为准线的抛物线,
其方程为:y2=2x(x>0).…(8分)
( II)?M(x,y)∈C,M到y轴的距离为d=|x|=x,…(9分)
圆的半径,…(10分)
,M(x,y)∈C…(12分)
由( I)知
所以,是定值.…(14分)
点评:本题考查抛物线的定义,考查轨迹方程,考查圆中弦长的求解,正确运用抛物线的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案