精英家教网 > 高中数学 > 题目详情
双曲线
x2
4
-
y2
12
=1
的渐近线方程为(  )
A、x=±2
B、y=±2
3
C、y=±
3
x
D、x=±
3
y
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:直接利用双曲线方程求出渐近线方程即可.
解答: 解:∵双曲线
x2
4
-
y2
12
=1

∴双曲线的渐近线方程为
x2
4
-
y2
12
=0
,即y=±
3
x

故选:C.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个命题:
①函数y=
1
x
在R上单调递减;
②若函数y=x2-2ax+3在区间(-∞,2]上单调递减,则a≥2;
③若lg(2x)>lg(x-1),则x>-1;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=0.
其中正确的序号是
 
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

“1<m<3”是“方程
x2
m-1
+
y2
3-m
=1表示椭圆”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
x2+1
)
满足f(a-1)+f(b-3)=0,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-1,0,1},B={x|-1<x<2},则A∩B等于(  )
A、{1}
B、{-1,1}
C、{1,0}
D、{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,若|
AC
|2-|
BD
|2=2|
AB
|•|
AD
|,则∠BAD=(  )
A、
π
6
B、
π
4
C、
π
2
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足线性约束条件
x-y+1≥0
2x+y-a≥0
x≤2
,且3x+y的最小值为1,则a=(  )
A、0B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若以F为右焦点的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左支上存在一点P,使得线段PF被y=
b
a
x垂直平分,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x+a
x
,x∈[1,+∞),当a=-
1
2
时,求函数的最小值.

查看答案和解析>>

同步练习册答案