精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=k-|x-3|,k∈R,且f(x+3)≥0的解集为[-1,1].
(1)求k的值;
(2)若a,b,c∈R,且$\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}=k$,求证:a+2b+3c≥9.

分析 (1)f(x+3)≥0等价于k-|x|≥0,等价于-k≤x≤1.再根据 f(x+3)≥0的解集为[-1,1],可得k的值
(2)由条阿金可得不等式的左边为(a+2b+3c)($\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$ ),再利用柯西不等式求得它的最小值为9,从而证得不等式成立.

解答 解:(1)由题意可得 f(x+3)=k-|x|,f(x+3)≥0等价于k-|x|≥0,
等价于|x|≤k,即-k≤x≤1.
再根据 f(x+3)≥0的解集为[-1,1],可得k=1.
(2)∵$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k=1,∴(a+2b+3c)($\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$ )≥${(\sqrt{a}•\frac{1}{\sqrt{a}}+\sqrt{2b}•\frac{1}{\sqrt{2b}}+\sqrt{3c}•\frac{1}{\sqrt{3c}})}^{2}$=9.

点评 本题主要考查绝对值不等式的解法,柯西不等式的应用,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.从3名男生和2名女生中任选2名学生参加演讲比赛,在选出的这2人中,设事件A={恰有1名男生},事件B={至少有1名男生},事件C={全是女生},则下列结论正确的是(  )
A.A与B互斥B.A与B对立C.A与C对立D.B与C对立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知z∈C,i是虚数单位,f($\overline{z}$-1)=|z+i|,则f(1+2i)等于(  )
A.$\sqrt{10}$B.$\sqrt{2}$C.$\sqrt{13}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比.
(1)求数列{an}的通项公式;
(2)设Tn为数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2cos2ωx+sin(2ωx-$\frac{π}{6}$)(ω>0).
(1)若实数x0,x0+$\frac{π}{2}$是函数y=f(x)-1的两个相邻零点,求ω的值;
(2)△BAC中,若f($\frac{A}{4}$)=2,∠B>∠C,BC=$\sqrt{21}$,S△ABC=$\sqrt{3}$,O为△ABC的外心,求$\overrightarrow{AO}$?$\overrightarrow{BC}$的值.(利用已经求出的ω的值,)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=$\sqrt{3}$,点F是PB的中点,点E边BC上移动.
(1)无论点E在边BC何处,都有PE⊥AF;
(2)当点E为BC的中点时,求点D到平面PAE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ex(e为自然对数的底数),gn(x)=1+x+$\frac{x^2}{2!}$+$\frac{x^3}{3!}$+…+$\frac{x^n}{n!}$(n∈N*
(1)证明:f(x)≥g1(x);
(2)当x>0时,用数学归纳法证明:f(x)>gn(x);
(3)证明:1+($\frac{2}{2}$)1+($\frac{2}{3}$)2+($\frac{2}{4}$)3+…+($\frac{2}{n+1}$)n≤gn(1)<e(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=ln(3x-1),则f′(1)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且各项都是正数,2Sn=an+12-an+1(n∈N*),a1=1,
(1)求a2,a3
(2)求数列{an}的通项公式;
(3)求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和Tn

查看答案和解析>>

同步练习册答案