精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)是定义在区间[-a,a]上的奇函数,若g(x)=f(x)+2,则g(x)的最大值与最小值之和为(  )
A.0B.2C.4D.不能确定

分析 运用奇函数的性质:函数的最值互为相反数,可设f(x)的最小值为m,则最大值为-m,代入g(x),计算即可得到所求和.

解答 解:由函数f(x)是定义在区间[-a,a]上的奇函数,
可设f(x)的最小值为m,则最大值为-m,
由g(x)=f(x)+2,可得g(x)的最小值为m+2,最大值为2-m,
则g(x)的最大值与最小值之和为m+2+2-m=4.
故选C.

点评 本题考查函数的奇偶性的运用,考查函数的最值的求法,注意运用奇函数的性质:函数的最值互为相反数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数y=x2-6x+8在[1,a]为减函数,则a的取值范围是(  )
A.a≤3B.1<a≤3C.a≥3D.0≤a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是(  )
A.y=log${\;}_{\frac{1}{2}}$xB.$y=\frac{-1}{x}$C.y=-x3D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的值域:
(1)y=-2cosx-1;
(2)y=$\frac{2-cosx}{2+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知P(-2,-3)和以点Q为圆心的圆(x-4)2+(y-2)2=9.
(1)求以PC为直径的圆Q′的方程;
(2)设⊙Q′与⊙Q相交于点A、B,求直线AB的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在等差数列{an}中,a1,a2017为方程x2-10x+16=0的两根,则a2+a1009+a2016的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lg(3-x)+$\frac{1}{\sqrt{x-1}}$的定义于为A,函数g(x)=$\frac{2}{x+1}$,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,M为椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,F1是它的下焦点,F1也是抛物线x2=-4y的焦点,直线MF1与椭圆C的另一个交点为N,满足$\overrightarrow{M{F}_{1}}$=$\frac{5}{3}$$\overrightarrow{{F}_{1}N}$
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B不是上下顶点),且满足AA2⊥BA2(A2为上顶点),求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18个火柴,…,第2014个图形用的火柴根数为(  )
A.2012×2015B.2013×2014C.2013×2015D.3021×2015

查看答案和解析>>

同步练习册答案