精英家教网 > 高中数学 > 题目详情

【题目】2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量单位:进行了问卷调查,得到如下频率分布直方图:

求频率分布直方图中a的值;

以频率作为概率,试求消费者月饼购买量在的概率;

已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求频率分布直方图中同一组的数据用该组区间的中点值作代表

【答案】(1);(2)0.62;(3)12.08吨

【解析】

(1)由频率分布直方图列出方程能求出a

(2)由频率分布直方图先求出满足题意的频率,即得概率.

(3)由频率分布直方图先求出人均月饼购买量,由此能求出该超市应准备12.08吨月饼恰好能满足市场需求.

,解得

消费者月饼购买量在的频率为:

费者月饼购买量在的概率为

由频率分布直方图得人均月饼购买量为:

万克吨,

∴该超市应准备吨月饼恰好能满足市场需求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个命题:

的最小正周期为

的图象关于直线对称

在区间上单调递增

的值域为

在区间上有6个零点

其中所有正确的编号是(

A.②④B.①④⑤C.③④D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:

品种A357,359,367,368,375,388,392,399,400,405,412, 414,415,421,423,423,427,430,430,434,443,445,445,451,454

品种B363,371,374,383,385,386,391,392,394,394,395, 397,397,400,401,401,403,406,407,410,412,415,416,422,430

(1)作出茎叶图;

(2)通过观察茎叶图,对品种AB的亩产量及其稳定性进行比较,写出统计结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过椭圆的左焦点.

1)求椭圆与抛物线的方程;

2)直线经过椭圆的上顶点且与抛物线交于两点,直线与抛物线分别交于点(异于点),(异于点),证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=6x焦点的弦长为12,则该弦所在直线的倾斜角是(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究不同性别在处理多任务时的表现差异,召集了男女志愿者各200名,要求他们同时完成多个任务,包括解题、读地图、接电话.下图表示了志愿者完成任务所需的时间分布.以下结论,对志愿者完成任务所需的时间分布图表理解正确的是(

①总体看女性处理多任务平均用时更短;

②所有女性处理多任务的能力都要优于男性;

③男性的时间分布更接近正态分布;

④女性处理多任务的用时为正数,男性处理多任务的用时为负数.

A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,圆的圆心为,一动圆与圆内切,与圆外切.

(1)求动圆圆心的轨迹方程;

(2)过点的直线与曲线交于两点,点是直线上任意点,直线的斜率分别为,试探求的关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别为,抛物线的焦点恰好是该椭圆的一个顶点.

1)求椭圆的方程;

2)已知圆的切线(直线的斜率存在且不为零)与椭圆相交于两点,那么以为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三点在椭圆.

1)求的方程;

2)设的短轴端点分别为,直线两点,交轴于点,若,求实数的值.

查看答案和解析>>

同步练习册答案