精英家教网 > 高中数学 > 题目详情
18.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是(  )
A.$\frac{4}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{5}$

分析 在5件产品中,有4件正品,从中任取2件,先求出基本事件总数,再求出2件都是正品包含的基本事件个数,由此能求出2件都是正品的概率.

解答 解:在5件产品中,有4件正品,从中任取2件,
基本事件总数n=${C}_{5}^{2}$=10,
2件都是正品包含的基本事件个数m=${C}_{4}^{2}$=6,
∴2件都是正品的概率p=$\frac{m}{n}$=$\frac{6}{10}$=$\frac{3}{5}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知奇函数f(x)在定义域(-3,3)上是减函数,且满足f(2x-1)+f(1)<0,则x的取值范围为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左支上一点,F1,F2分别是它的左右焦点,直线PF2与圆:x2+y2=a2相切,切点为线段PF2的中点,则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲箱子里装有3个白球m个黑球,乙箱子里装有m个白球,2个黑球,在一次试验中,分别从这两个箱子里摸出一个球,若它们都是白球,则获奖
(1)当获奖概率最大时,求m的值;
(2)在(1)的条件下,班长用上述摸奖方法决定参加游戏的人数,班长有4次摸奖机会(有放回摸取),当班长中奖时已试验次数ξ即为参加游戏人数,如4次均未中奖,则ξ=0,求ξ的分布列和Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnxx+bx的图象过点($\frac{1}{e}$,$\frac{1}{e}$),且在点(1,f(1))处的切线与直线x+y-e=0垂直(e为自然数的底数,且e=2.71828…)
(1)求a、b的值;
(2)若存在x0∈[$\frac{1}{e}$,e],使得不等式f(x0)+$\frac{1}{2}$x02-$\frac{1}{2}$tx0≥-$\frac{3}{2}$成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的程序框图,若输入n的值为7,则输出s的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是(  )
A.4$\sqrt{3}$B.8 $\sqrt{3}$C.4$\sqrt{7}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点在圆x2+y2-2x-8=0上,则双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{\sqrt{11}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线f(x)=$\sqrt{x}$+$\frac{a}{x}$在(1,a+1)处的切线与直线3x+y=0垂直,则a等于(  )
A.-$\frac{5}{2}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.$\frac{7}{2}$

查看答案和解析>>

同步练习册答案