精英家教网 > 高中数学 > 题目详情

在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个的列联表;

P(k2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
 k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.83
(2)检验性别与休闲方式是否有关系。(本题可以参考两个分类变量x和y有关系的可信度表:)

2
4
5
6
8

30
40
60
50
70

(1)

  
看电视
运动
合计

43
27
70

21
33
54
合计
64
60
124
(2)因为,所以有理由认为假设休闲方式与性别无关是不合理的,即我们有97.5%的把握认为休闲方式与性别无关

解析试题分析:(1)的列联表:

  
看电视
运动
合计

43
27
70

21
33
54
合计
64
60
124
(2)假设休闲方式与性别无关,计算
因为,所以有理由认为假设休闲方式与性别无关是不合理的,即我们有97.5%的把握认为休闲方式与性别无关。
考点:独立性检验的运用
点评:解决关键是理解两个分类变量,以及得到列联表,同时借助于的公式得到求解,判定犯错率,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为        

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:                                 

 


总计
走天桥
40
20
 
走斑马线
20
30
 
总计
 
 
 


  0.050        0.010       0.001

   3.841       6.635       10.828
(1)完成表格
(2)能否在犯错误的概率不超过0.010的前提下认为性别与愿意走斑马线还是愿意走人行天桥有关系。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术发行后,生产甲产品过程中记录的产量(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.

x
3
4
5
6
y
2.5
3
4
4.5
(1)求线性回归方程所表示的直线必经过的点;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
并预测生产1000吨甲产品的生产能耗多少吨标准煤?
(参考:)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校为了解毕业班学业水平考试学生的数学考试情况, 抽取了该校100名学生的数学成绩, 将所有数据整理后, 画出了样频率分布直方图(所图所示), 若第1组、第9组的频率各为.

(Ⅰ) 求的值, 并估计这次学业水平考试数学成绩的平均数;
(Ⅱ)若全校有1500名学生参加了此次考试,估计成绩在分内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中日“钓鱼岛争端”问题越来越引起社会关注,我校对高一600名学生进行了一次“钓鱼岛”
知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和
频率分布直方图.

(1)填写答题卡频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)试估计该年段成绩在段的有多少人;
(3)请你估算该年级的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.

月收入(单位百元)
[15,25
[25,35
[35,45
[45,55
[55,65
[65,75
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
 
(1)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
 
月收入不低于55百元的人数
月收入低于55百元的人数
合计
赞成


 
不赞成


 
合计
 
 
 
 
(2)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量的分布列。
附:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按照5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列各题.

(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数量最多?有多少件?
(3)经过评比,第四组和第六组分别有10件?2件作品获奖,问这两组哪一组获奖率较高?

查看答案和解析>>

同步练习册答案