精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的个数是( )

①设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为 ,则若该大学某女生身高增加,则其体重约增加

②关于的方程的两根可分别作为椭圆和双曲线的离心率;

③过定圆上一定点作圆的动弦为原点,若,则动点的轨迹为椭圆;

④已知是椭圆的左焦点,设动点在椭圆上,若直线的斜率大于,则直线为原点)的斜率的取值范围是.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根据回归方程的意义判断①;先推出方程的一根大于1 , 一根大于0小于1,结合椭圆与双曲线离心率定义可判断②;利用参数法求出动点的轨迹可判断③;由题意画出图形,得到满足直线的斜率大于所在的位置,求出直线的斜率的取值范围可判断④.

①根据回归方程的意义,结合回归方程为 ,可得该大学某女生身高增加,则其体重约增加,正确;

②关于的方程的两根之和大于2 , 两根之积等于1, 故两根中一根大于1 , 一根大于0小于1,可分别作为椭圆和双曲线的离心率,正确;

③设定圆的方程为,定点,设,由,得,消去参数,得,即动点的轨迹为圆,③错误.

④由,得

,如图:

作垂直于轴的直线,交椭圆于,过斜率为的直线与椭圆交于,当在椭圆弧上上时,符合题意, 又,当在椭圆弧上时,直线 的斜率的取值范围是 ,当在椭圆弧上时, 直线的斜率的取值范围是,即满足直线的斜率大于,直线的斜率的取值范围是正确,综上可知正确命题个数为3,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)讨论函数的单调性;

(2)当时,,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形中,

(1)求的长;

(2)若,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4/立方米收费,超出立方米的部分按10/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4/立方米, 至少定为多少?

2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的左、右焦点分别为,短轴的两端点分别为,线段的中点分别为,且四边形是面积为8的矩形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过作直线交椭圆于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S-ABC中,已知SC⊥平面ABC,AB=BC=CA,SC=2,D、E分别为AB、BC的中点.若点P在SE上移动,求△PCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的零点;

2)若函数为偶函数,求实数的值;

3)若不等式上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案