精英家教网 > 高中数学 > 题目详情

.函数y=ax3x在(-∞,+∞)上是减函数,则

A.a=                                                           B.a=1

C.a=2                                                             D.a<0

D


解析:

本题可以采用解选择题的常用方法——验证法.由y′=3ax2-1,当a=时,y′=   x2-1,如果x>1则y′>0,与条件不符.同样可判断a=1,a=2时也不符合题意.当a<0时,     y′=3ax2-1恒小于0,则原函数在(-∞,+∞)上是减函数.故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=ax3-3x2
(Ⅰ)若x=2是函数y=f(x)的极值点,求a的值;
(Ⅱ)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; 
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,函数f(x)=x3-
3
2
x2+3x-
1
4
,则它的对称中心为
(
1
2
,1)
(
1
2
,1)
;计算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)
=
2012
2012

查看答案和解析>>

科目:高中数学 来源: 题型:

给定下列四个命题:
①sinx
1
2
是x
π
6
的充分不必要条件
②若命题“p∨q”为真,则命题“p∧q”为真
③若函数y=ax3+2x2+x-3(a∈R)在R上是增函数,则 a≥
4
3

④若a<b,则am2<bm2 其中真命题是
 
(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案