精英家教网 > 高中数学 > 题目详情
7.设(x-$\frac{2}{\sqrt{x}}$)6的展开式中x3的系数为A,则A的值为(  )
A.60B.-60C.15D.-15

分析 根据二项式展开式的通项公式,令x的指数等于3,即可求出展开式中x3的系数A.

解答 解:(x-$\frac{2}{\sqrt{x}}$)6的展开式的通项公式为
Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{2}{\sqrt{x}})}^{r}$=(-2)r•${C}_{6}^{r}$•${x}^{6-\frac{3r}{2}}$,
令6-$\frac{3r}{2}$=3,解得r=2,
得展开式中x3的系数是
A=(-2)2•${C}_{6}^{2}$=60.
故选:A.

点评 本题考查了利用二项式展开式的通项公式求特定项的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在长方体ABCD-A1B1C1D1中,E是A1C1与B1D1的交点,AB=BC=$\sqrt{2}$,AA1=1.
(1)求证:AE∥平面C1BD;
(2)求证:CE⊥平面C1BD;
(3)求二面角A-BC1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c是三条不同的直线,α,β是两个不同的平面,给出下列命题:
①a?α,α∥β,则a∥β;
②若a∥α,α∥β,则a∥β;
③若α∥β,a⊥α,则a⊥β;
④若a∥β,a∩α=A,则a与β必相交;
⑤若异面直线a与b所成角为50°,b∥c,a与c异面,则a与c所成角为50°.
其中正确命题的序号为①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若大前提是,任何实数的四次方都大于0,小前提是:a∈R,结论是:a4>0,那么这个演绎推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.没有错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若从高二男生中随机抽取5名男生,其身高和体重数据如表所示:
身高x(cm)160165170175180
体重y(kg)6366707477
根据如表可得回归方程为:$\widehat{y}$=0.56x+$\widehat{a}$,则预报身高为172的男生的体重(  )
A.71.12B.约为71.12C.约为72D.无法预知

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,则$\frac{y+2}{x-2}$的取值范围是(  )
A.[-5,$\frac{5}{3}$]B.[-5,0)∪[$\frac{5}{3}$,+∞)C.(-∞,-5]∪[$\frac{5}{3}$,+∞)D.[-5,0)∪(0,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\sqrt{1-{x}^{2}}$,则${∫}_{-1}^{1}$ f (x)dx的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.计算:1-2sin2105°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则$\overrightarrow{a}$$•\overrightarrow{b}$+$\overrightarrow{b}$2=5.

查看答案和解析>>

同步练习册答案