精英家教网 > 高中数学 > 题目详情
2.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,表示的平面区域上运动,则z=x-y的取值范围是(  )
A.[1,2]B.[-2,1]C.[-2,-1]D.[-1,2]

分析 作出不等式组对应的平面区域,利用z的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图:
由z=x-y,得y=x-z表示,斜率为1纵截距为-z的一组平行直线,
平移直线y=x-z,当直线y=x-z经过点B时,直线y=x-z的截距最小,此时z最大,
当直线经过点C时,此时直线y=x-z截距最大,z最小.
由$\left\{\begin{array}{l}{x=2}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即B(2,0),此时zmax=2.
由$\left\{\begin{array}{l}{y-1=0}\\{x+2y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即C(0,1),此时zmin=0-1=-1.
∴-1≤z≤2,
故选:D.

点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.根据下列条件,求圆的方程:
(1)圆心在直线y=-4x上,且与直线l:x+y-1=0相切与点P(3,-2);
(2)已知圆和y轴相切,圆心在直线x-3y=0上,且被直线y=x解得弦长为$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知t为实数,函数f(x)=2loga(2x+t-2),g(x)=logax,其中0<a<1.
(1)若函数y=g(ax+1)-kx是偶函数,求实数k的值;
(2)当x∈[1,4]时,f(x)的图象始终在g(x)的图象的下方,求t的取值范围;
(3)设t=4,当x∈[m,n]时,函数y=|f(x)|的值域为[0,2],若n-m的最小值为$\frac{1}{6}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,ABCD是梯形,AD∥BC,∠ABC=90°,平面PAB⊥平面ABCD,PB⊥AB且AD=AB=BP=$\frac{1}{2}$BC.
(1)求证:CD⊥平面PBD;
(2)已知点Q在PC上,若AC与BD交于点O,且AP∥平面BDQ,求证:OQ∥平面APD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出S的值是(  )
A.10B.12C.100D.102

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于(  )
A.7B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点F作该双曲线一条渐近线的垂线交此渐近线于点M,若O为坐标原点,△OFM的面积是$\frac{1}{2}{a^2}$,则该双曲线的离心率是(  )
A.2B.$\sqrt{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E是PB的中点,则异面直线DE与PA所成角的余弦值为(  )
A.$\frac{{3\sqrt{10}}}{20}$B.$\frac{{\sqrt{10}}}{20}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=(  )
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

查看答案和解析>>

同步练习册答案