精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足Sn=
1
3
an-1
,那么Tn=a2+a4+…+a2n为(  )
A、1-
1
4n
B、21-2n-2
C、(-
1
2
)n-1
D、
1
2
+(-
1
2
)1+n
分析:通过纽带:an=Sn-Sn-1(n≥2),统一形式,消掉Sn,得到an的通项公式,进而求解.
解答:解:∵Sn=
1
3
an-1
…①
当n=1时,S1=
1
3
a1-1
,则a1=-
3
2

当n≥2时,Sn-1=
1
3
an-1-1
…②,
①-②得:SnSn-1=
1
3
an-
1
3
an-1
an =
1
3
a
n
1
3
an-1

an =-
1
2
an-1

∴数列{an}是等比数列,首项a1=-
3
2
,公比q=-
1
2

∴数列{a2n}也是等比数列,首项a2=
3
4
,公比q=q2=
1
4

∴Tn=a2+a4+…+a2n=
3
4
[1-(
1
4
)
n
1-
1
4
=1-
1
4n

故选A.
点评:①利用Sn与an的递推式,根据题目求解的特点,消掉一个Sn或an,然后再构造等差或等比数列求解.
②要注意公式an=Sn-Sn-1成立的条件n≥2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案