精英家教网 > 高中数学 > 题目详情

【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式p=f(k).

2)若p与干扰素计量相关,其中2)是不同的正实数,满足x1=1.

(i)求证:数列为等比数列;

(ii)时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.

【答案】(1)2(i)证明见解析;(ii)4

【解析】

(1)由题意分析可得,的可能取值为1,,即可求得,再由求解即可;

2(i)整理可得,即,可解得,即可得证;

(ii)(i),由于,,整理可得,,利用导函数判断的单调性,再根据即可求解.

1)由已知得,的可能取值为1,,

所以,,

所以,

因为,,

所以,

所以

2(i)证明:因为,

所以,

所以,

所以(舍去),

所以是以1为首项,以为公比的等比数列.

(ii)(i)可知,则,即,

由题意可知,则有,

整理得,

,,

,;当,,

上单调递增,上单调递减,

,,

所以的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】维生素C又叫抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数生物的必需营养素.维生素C虽不直接构成脑组织,也不向脑提供活动能源,但维生素C有多种健脑强身的功效,它是脑功能极为重要的营养物.维生素C的毒性很小,但食用过多仍可产生一些不良反应.根据食物中维C的含量可大致分为:含量很丰富:鲜枣、沙棘、猕猴桃、柚子,每100克中的维生素C含量超过100毫克;比较丰富:青椒、桂圆、番茄、草莓、甘蓝、黄瓜、柑橘、菜花,每100克中维生素C含量超过50毫克;相对丰富:白菜、油菜、香菜、菠菜、芹菜、苋菜、菜苔、豌豆、豇豆、萝卜,每100克中维生素C含量超过30~50毫克.现从猕猴桃、柚子两种食物中测得每100克所含维生素C的量(单位:)得到茎叶图如图所示,则下列说法中不正确的是(

A.猕猴桃的平均数小于柚子的平均数

B.猕猴桃的方差小于柚子的方差

C.猕猴桃的极差为32

D.柚子的中位数为121

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线,直线的参数方程为,(为参数).直线与曲线交于两点.

1)写出曲线的直角坐标方程和直线的普通方程.

2)设,若成等比数列,求和的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上方的点在抛物线上,且,直线与抛物线交于两点(点不重合),设直线的斜率分别为.

(Ⅰ)求抛物线的方程;

(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点A的极坐标为,直线l的极坐标方程为

1)求直线l的直角坐标方程与曲线C的普通方程;

2)若B是曲线C上的动点,G为线段的中点.求点G到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.

(1)求频率分布直方图中的值并估计这50户用户的平均用电量;

(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:

①从类用户中任意抽取3户,求恰好有2户打分超过85分的概率;

②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?

满意

不满意

合计

类用户

类用户

合计

附表及公式:

<>0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)直线与抛物线交于两点,若,求点到直线的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右顶点,椭圆的右焦点为,椭圆的离心率为.

1)设直线与椭圆交于两点,且,求的值;

2)设过点且斜率为1的直线与椭圆交于(其中分别在轴的上、下方)两点,当时,记的面积分别为,求的最小值,并求此时椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案