分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线D1M与CN的夹角的余弦值.
解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为2,
则M(1,1,0),N(2,1,1),C(0,2,0),D1(0,0,2),
∴$\overrightarrow{{D}_{1}M}$=(1,1,-2),$\overrightarrow{CN}$=(2,-1,1),
设直线D1M与CN的夹角为θ,
cosθ=|cos<$\overrightarrow{{D}_{1}M},\overrightarrow{CN}$>|=|$\frac{\overrightarrow{{D}_{1}M}•\overrightarrow{CN}}{|\overrightarrow{{D}_{1}M}|•|\overrightarrow{CN}|}$|=|$\frac{2-1-2}{\sqrt{6}•\sqrt{6}}$|=$\frac{1}{6}$.
∴直线D1M与CN的夹角的余弦值为$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.
点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com