【题目】某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?
【答案】(1)详见解析;(2)甲获得面试通过的可能性大
【解析】
试题分析:(1)确定甲、乙两人正确完成面试题数的取值,求出相应的概率,即可得到分布列,并计算其数学期望;
(2)确定Dξ<Dη,即可比较甲、乙两人谁的面试通过的可能性大.
试题解析:
(1)设甲正确完成面试的题数为,则的取值分别为1,2,3
;;;
应聘者甲正确完成题数的分布列为
1 | 2 | 3 | |
设乙正确完成面试的题数为,则取值分别为0,1,2,3
,
应聘者乙正确完成题数的分布列为:
0 | 1 | 2 | 3 | |
.
(或∵∴)
(2)因为,
所以
综上所述,从做对题数的数学期望考查,两人水平相当;
从做对题数的方差考查,甲较稳定;
从至少完成2道题的概率考查,甲获得面试通过的可能性大
科目:高中数学 来源: 题型:
【题目】双曲线的左、右焦点分别是,抛物线的焦点与点重合,点是抛物线与双曲线的一个交点,如图所示.
(1)求双曲线及抛物线的标准方程;
(2)设直线与双曲线的过一、三象限的渐近线平行,且交抛物线于两点,交双曲线于点,若点是线段的中点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1: (t为参数,t≠0),其中0≤α<π.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,C3:ρ=2cos θ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,当时,恒有.当时, .
(Ⅰ)求证: 是奇函数;
(Ⅱ)若,试求在区间上的最值;
(Ⅲ)是否存在,使对于任意恒成立?若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )
A.分层抽样B.回归分析C.独立性检验D.频率分布直方图
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中(底面△ABC为正三角形),A1A⊥平面ABC,AB=AC=2,,D是BC边的中点.
(1)证明:平面ADB1⊥平面BB1C1C.
(2)求点B到平面ADB1的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·郑州模拟)某市公安局为加强安保工作,特举行安保项目的选拔比赛活动,其中A、B两个代表队进行对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间胜负概率如下表,现按表中对阵方式进行三场比赛,每场胜队得1分,负队得0分,设A队、B队最后所得总分分别为ξ,η,且ξ+η=3.
对阵队员 | A队队员胜 | A队队员负 |
A1对B1 |
| |
A2对B2 | ||
A3对B3 |
(1)求A队最后所得总分为1的概率;
(2)求ξ的分布列,并用统计学的知识说明哪个队实力较强.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com