【题目】函数
(1)讨论在其定义域上的单调性;
(2)设,m,n分别为的极大值和极小值,若S=m-n,求S的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)求出函数的定义域和导数,在其定义域内,解不等式和,即可求出函数的单调增区间和减区间,因为函数含参,注意分类讨论;
(2)由题可得在内有相异两根,
又,可得,由此解出.
因为,利用根与系数的关系,化简可得,构造函数,求出其在上的值域,即可得S的取值范围.
(1)函数定义域为 ,
,
当时,,所以在单调递减;
当时,,所以在单调递增;
当时,在内有相异两根,
设,,
令所以或;令,∴;
∴在上递增,在上递减,在上递增.
(2)依题意可知,在内有相异两根,
所以,又,可得
此时设的两根为,∴
∵, ∴,
由,且,得.
∴
由得 代入上式得
令,所以,,
则,
∴在上为减函数,
从而,即
∴.
科目:高中数学 来源: 题型:
【题目】平面内任意一点到两定点、的距离之和为.
(1)若点是第二象限内的一点且满足,求点的坐标;
(2)设平面内有关于原点对称的两定点,判别是否有最大值和最小值,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.
(1)若且,求的值;
(2)求函数在上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列的前项和为且满足:
(1)求数列的通项公式;
(2)设求的值;
(3)是否存在大于2的正整数使得?若存在,求出所有符合条件的若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位数为30万人
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点,若为线段上的动点(不含).
(1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角的余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用一个长为,宽为的矩形铁皮(如图1)制作成一个直角圆形弯管(如图3):先在矩形的中间画一条曲线,并沿曲线剪开,将所得的两部分分别卷成体积相等的斜截圆柱状(如图2),然后将其中一个适当翻转拼接成直角圆形弯管(如图3)(不计拼接损耗部分),并使得直角圆形弯管的体积最大;
(1)求直角圆形弯管(图3)的体积;
(2)求斜截面椭圆的焦距;
(3)在相应的图1中建立适当的坐标系,使所画的曲线的方程为,求出方程并画出大致图像;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有三个公共点;
④把函数的图象向右平移个单位得到的图象;
⑤函数在上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某游戏棋盘上标有第、、、、站,棋子开始位于第站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.
(1)当游戏开始时,若抛掷均匀硬币次后,求棋子所走站数之和的分布列与数学期望;
(2)证明:;
(3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com