精英家教网 > 高中数学 > 题目详情

【题目】函数

1)讨论在其定义域上的单调性;

2)设mn分别为的极大值和极小值,若S=m-n,求S的取值范围.

【答案】1)见解析;(2

【解析】

1)求出函数的定义域和导数,在其定义域内,解不等式,即可求出函数的单调增区间和减区间,因为函数含参,注意分类讨论;

2)由题可得内有相异两根

,可得,由此解出

因为,利用根与系数的关系,化简可得,构造函数,求出其在上的值域,即可得S的取值范围.

1)函数定义域为

时,,所以单调递减;

时,,所以单调递增;

时,内有相异两根,

所以;令,∴

上递增,在上递减,在上递增.

2)依题意可知,内有相异两根,

所以,又,可得

此时设的两根为,∴

,且,得

代入上式得

,所以

上为减函数,

从而,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面内任意一点到两定点的距离之和为.

(1)若点是第二象限内的一点且满足,求点的坐标;

(2)设平面内有关于原点对称的两定点,判别是否有最大值和最小值,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量;③函数这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为

1)若,求的值;

2)求函数上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列的前项和为且满足:

(1)求数列的通项公式;

(2)的值;

(3)是否存在大于2的正整数使得?若存在,求出所有符合条件的若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20171月至201912月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是(  )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位数为30万人

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,若为线段上的动点(不含.

1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;

2)求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一个长为,宽为的矩形铁皮(如图1)制作成一个直角圆形弯管(如图3):先在矩形的中间画一条曲线,并沿曲线剪开,将所得的两部分分别卷成体积相等的斜截圆柱状(如图2),然后将其中一个适当翻转拼接成直角圆形弯管(如图3)(不计拼接损耗部分),并使得直角圆形弯管的体积最大;

1)求直角圆形弯管(图3)的体积;

2)求斜截面椭圆的焦距;

3)在相应的图1中建立适当的坐标系,使所画的曲线的方程为,求出方程并画出大致图像;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题:

①函数的最小正周期是

②终边在轴上的角的集合是

③在同一坐标系中,函数的图象和函数的图象有三个公共点;

④把函数的图象向右平移个单位得到的图象;

⑤函数上是减函数;

其中真命题的序号是(  )

A.①②⑤B.①④C.③⑤D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某游戏棋盘上标有第站,棋子开始位于第站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第站或第站时,游戏结束.设游戏过程中棋子出现在第站的概率为.

1)当游戏开始时,若抛掷均匀硬币次后,求棋子所走站数之和的分布列与数学期望;

2)证明:

3)若最终棋子落在第站,则记选手落败,若最终棋子落在第站,则记选手获胜.请分析这个游戏是否公平.

查看答案和解析>>

同步练习册答案