精英家教网 > 高中数学 > 题目详情
8.某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如表:
温度x(℃)3233353738
西瓜个数y2022243034
(1)求这五天内所卖西瓜个数的平均值和方差;
(2)求变量x.y之间的线性回归方程,并预测当温度为30℃时所卖西瓜的个数.
附:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$(精确到0.1)

分析 (1)由总数除以天数得平均数,根据方差公式,代入可得方差;
(2)根据公式求回归系数,可得回归方程;x=30,代入计算,可预测当温度为30℃时所卖西瓜的个数.

解答 解:(1)$\overline{y}$=$\frac{20+22+24+30+34}{5}$=26,
方差为s2=$\frac{1}{5}×$[(20-26)2+(22-26)2+(24-26)2+(30-26)2+(34-26)2]=27.2.
(2)$\overline{x}$=35,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=6151,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=4608,
所以$\stackrel{∧}{b}$=$\frac{4608-5×35×26}{6151-5×3{5}^{2}}$≈2.2,$\stackrel{∧}{a}$=25-2.2×35=-51,
所以回归直线方程为$\stackrel{∧}{y}$=2.2x-51,
当x=30时,$\stackrel{∧}{y}$=15,所以预测当温度为30℃时所卖西瓜的个数为15.

点评 本题考查平均值和方差,考查线性回归方程,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知三棱锥A-BCD中,AB=AC=3,BD=CD=$\sqrt{2}$,且BD⊥CD,若点A在平面BCD内的投影恰好为点D,则此三棱锥外接球的表面积为11π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算下列定积分.
(1)$\int_{-3}^2{|{x+1}|}dx$
(2)设$f(x)=\left\{\begin{array}{l}{x^2}(0≤x<1)\\ 2-x(1≤x≤2)\end{array}\right.$,则$\int_0^2{f(x)dx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$f(n)=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n∈{N_+})$,用数学归纳法证明$f({2^n})>\frac{n+1}{2}$时,f(2k+1)-f(2k)等于$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的导数
(1)y=$\frac{1}{{x}^{2}}$;   
(2)y=$\root{3}{x}$;     
(3)y=2x;     
(4)y=log3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(理科)如图,在空间四面体ABCD中,若E,F,G,H分别是AB,BD,CD,AC的中点,且AD⊥BC
(1)求证:四边形EFGH是矩形.
(2)求证:AD∥平面EFGH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.高三年级有8个班级,分派4位数学老师任教,每个教师教两个班,则不同的分派方法有(  )
A.${P}_{8}^{2}$${P}_{6}^{2}$${P}_{4}^{2}$${P}_{2}^{2}$B.${C}_{8}^{2}$${C}_{6}^{2}$${C}_{4}^{2}$${C}_{2}^{2}$
C.${C}_{8}^{2}$${C}_{6}^{2}$${C}_{4}^{2}$${C}_{2}^{2}$${P}_{4}^{4}$D.$\frac{C_8^2C_6^2C_4^2C_2^2}{4!}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一条渐近线的方程为y=3x,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若等比数列{an}满足a2a4=a5,a4=8,则公比q=2,前n项和Sn=2n-1.

查看答案和解析>>

同步练习册答案