精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函数f(x)= 的最大值为6.
(1)求A;
(2)将函数y=f(x)的图象像左平移 个单位,再将所得图象各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

【答案】
(1)解:函数f(x)= = Asinxcosx+ cos2x= Asin2x+ cos2x=A( sin2x+ cos2x)=Asin(2x+ ).

因为A>0,由题意可知A=6.


(2)解:由(1)f(x)=6sin(2x+ ).

将函数y=f(x)的图象向左平移 个单位后得到,

y=6sin[2(x+ )+ ]=6sin(2x+ )的图象.再将所得图象各点的横坐标缩短为原来的 倍,

纵坐标不变,得到函数y=6sin(4x+ )的图象.因此g(x)=6sin(4x+ ).

因为x∈[0, ],所以4x+ ∈[ ],4x+ = 时取得最大值6,4x+ = 时函数取得最小值﹣3.

故g(x)在[0, ]上的值域为[﹣3,6]


【解析】(1)利用向量的数量积展开,通过二倍角公式以及两角和的正弦函数化为,一个角的一个三角函数的形式,通过最大值求A;(2)通过函数y=Asin(ωx+φ)的图象变换规律将函数y=f(x)的图象像左平移 个单位,再将所得图象各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求出g(x)的表达式,通过x∈[0, ]求出函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax.
(1)若函数f(x)在x=3处取得极值,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若a> ,函数y=f(x)在[0,2a]上的最小值是﹣a2 , 求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,是真命题的是(
A.?x0∈R,使得e ≤0
B.
C.?x∈R,2x>x2
D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.

1)求的轨迹方程;

2)当时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,侧棱垂直于底面, 分别是的中点.

1)求证: 平面平面

2)求证: 平面

3)求三棱锥体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,若是线段上的动点,则下列结论不正确的是(  )

A. 三棱锥的正视图面积是定值

B. 异面直线所成的角可为

C. 异面直线所成的角为

D. 直线与平面所成的角可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a﹣x2(1≤x≤2)与g(x)=x+2的图象上存在关于x轴对称的点,则实数a的取值范围是(
A.[﹣ ,+∞)
B.[﹣ ,0]
C.[﹣2,0]
D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程是 (t是参数),以坐标原点为极点,x轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆C的极坐标方程为ρ=2 cos(θ+ ).
(1)求直线l的普通方程与圆C的直角坐标方程;
(2)设圆C与直线l交于A、B两点,若P点的直角坐标为(1,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求证:AD⊥PB;
(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.

查看答案和解析>>

同步练习册答案