精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象关于点(-1,0)对称,且满足f(x)=-f(x-1).当x∈(-2,-1)时,f(x)=
1
x+2
,则当x∈(1,2)时,f(x)=______.
∵f(x)=-f(x-1),
∴以x+1代替x,得f(x+1)=-f(x)
再结合f(x)=-f(x-1),可得f(x+1)=-[-f(x-1)]=f(x-1)
即f[(x-1)+2]=f(x-1),由此可得f(x+2)=f(x),函数是周期为2的周期函数
∵函数y=f(x)的图象关于点(-1,0)对称,
∴f(-2-x)+f(x)=0,可得f(x)=-f(-2-x)
设-1<x<0,得-2<-2-x<-1,则f(-2-x)=
1
(-2-x)+2
=-
1
x
,所以f(x)=-f(-2-x)=
1
x

再设x∈(1,2),则-1<x-2<0,f(x-2)=
1
x-2

最后,根据f(x)是周期为2的周期函数,可得f(x)=f(x-2)=
1
x-2

∴当x∈(1,2)时,f(x)=
1
x-2

故答案为:
1
x-2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案