精英家教网 > 高中数学 > 题目详情

设函数f(x)=|2x+1|-|x-2|.
(Ⅰ)求不等式的解集;
(Ⅱ)若{x|f(x)≥-t}∩{y|0≤y≤1}≠,求实数t的取值范围.

(Ⅰ)解集为;(Ⅱ)

解析试题分析:(Ⅰ)解不等式,首先将转化为分段函数,然后利用分段函数分段解不等式,从而求出不等式的解;易错点,不知将转化为分段函数;(Ⅱ)不等式,即时有解,只要的最大值大于即可,因此只需求出的最大值即可, 而,易求出最大值,然后解一元二次不等式即可.
试题解析:(Ⅰ),所求解集为 
(Ⅱ)依题意得时有解,则  
考点:本小题考查绝对值不等式的解法,考查学生数形结合的能力以及化归与转化思想,以及学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求不等式的解集;
(2)若不等式有解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|x+2|+|2x-4|
(1)求f(x)<6的解集;
(2)若关于的不等式f(x)≥m2-3m的解集是R,求m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中实数.
(1)当时,求不等式的解集;
(2)若不等式的解集为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且方程有两个实根为
(1)求函数的解析式 ; 
(2)设,解关于x的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记关于的不等式的解集为,不等式的解集为
(1)若,求
(2)若,求正数的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)解不等式
(Ⅱ)若不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)解不等式
(Ⅱ)若对任意实数恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)解不等式
(Ⅱ)对于任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案