【题目】若(a+b+c)(b+c﹣a)=3ab,且sinA=2sinBcosC,那么△ABC是( )
A.直角三角形
B.等边三角形
C.等腰三角形
D.等腰直角三角形
【答案】B
【解析】解:∵(a+b+c)(b+c﹣a)=3bc,
∴[(b+c)+a][(b+c)﹣a]=3bc,
∴(b+c)2﹣a2=3bc,
b2+2bc+c2﹣a2=3bc,
b2﹣bc+c2=a2 ,
根据余弦定理有a2=b2+c2﹣2bccosA,
∴b2﹣bc+c2=a2=b2+c2﹣2bccosA,
bc=2bccosA,
cosA= ,
∴A=60°,
又由sinA=2sinBcosC,
则 =2cosC,即 =2 ,
化简可得,b2=c2 ,
即b=c,
∴△ABC是等边三角形
故选:B.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】已知, .
(1)求函数的增区间;
(2)若函数有两个零点,求实数的取值范围,并说明理由;
(3)设正实数, 满足,当时,求证:对任意的两个正实数, 总有.
(参考求导公式: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
选课人数 | 180 | 540 | 540 | 360 | 180 | 1800 |
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为,选择数学1的人数为,设随机变量,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,椭圆C过点A ,两个焦点为(﹣1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C 的对边分别是a,b,c,已知 b+acos C=0,sin A=2sin(A+C).
(1)求角C的大小;
(2)求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:方程 + =1表示焦点在y轴上的椭圆,命题q:双曲线 ﹣ =1的离心率e∈( , ),若命题p、q中有且只有一个为真命题,则实数m的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com