精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,过点的直线l的参数方程为t为参数),lC交于AB两点.

1)求C的直角坐标方程和l的普通方程;

2)若成等比数列,求a的值.

【答案】1)直线l的普通方程为,曲线C的直角坐标方程为

2

【解析】

1)由,两边同乘ρ,由此能求出C的直角坐标方程;将直线l的参数方程消去参数t,能求出直线I的普通方程;

2)把代入,根据根与系数的关系及参数的几何意义即可求解.

1)由,两边同乘ρ,得

化为普通方程为

消去参数t,得直线l的普通方程为

2)把代入,整理得

,得

成等比数列,

t的几何意义得,即

,即

解得,又

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】英国统计学家EH.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):

法官甲

法官乙

终审结果

民事庭

行政庭

合计

终审结果

民事庭

行政庭

合计

维持

29

100

129

维持

90

20

110

推翻

3

18

21

推翻

10

5

15

合计

32

118

150

合计

100

25

125

记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,则下面说法正确的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点内一点,过点的直线交椭圆两点,为坐标原点,当时,

1)求椭圆的方程;

2)求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司新开发一电子产品,该电子产品的一个系统G有3个电子元件组成,各个电子元件能否正常工作的概率均为,且每个电子元件能否正常工作相互独立.若系统C中有超过一半的电子元件正常工作,则G可以正常工作,否则就需要维修,且维修所需费用为500元.

(1)求系统不需要维修的概率;

(2)该电子产品共由3个系统G组成,设E为电子产品需要维修的系统所需的费用,求的分布列与期望;

(3)为提高G系统正常工作概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率均为,且新增元件后有超过一半的电子元件正常工作,则C可以正常工作,问:满足什么条件时,可以提高整个G系统的正常工作概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1,第2,第3,第4 ,第5,得到的频率分布直方图如图所示

(1) 求的值

(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求在第1组已被抽到人的前提下,第3组被抽到人的概率;

(3)若从所有参与调查的人中任意选出人,记关注“生态文明”的人数为,求的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某社区举行的2020迎春晚会上,张明和王慧夫妻俩参加该社区的“夫妻蒙眼击鼓”游戏,每轮游戏中张明和王慧各蒙眼击鼓一次,每个人击中鼓则得积分100分,没有击中鼓则扣积分50分,最终积分以家庭为单位计分.已知张明每次击中鼓的概率为,王慧每次击中鼓的概率为;每轮游戏中张明和王慧击中与否互不影响,假设张明和王慧他们家庭参加两轮蒙眼击鼓游戏.

1)若家庭最终积分超过200分时,这个家庭就可以领取一台全自动洗衣机,问张明和王慧他们家庭可以领取一台全自动洗衣机的概率是多少?

2)张明和王慧他们家庭两轮游戏得积分之和的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)a≥2,F(x)=f(x)-g(x)的单调区间;

(2)h(x)=f(x)+g(x),h(x)有两个极值点为,其中,的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若的极小值为,求实数的值;

2)讨论函数的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程恰有两个不相等的实数根, 则实数的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案