【题目】已知 ,则关于的方程,给出下列五个命题:①存在实数,使得该方程没有实根;
②存在实数,使得该方程恰有个实根;
③存在实数,使得该方程恰有个不同实根;
④存在实数,使得该方程恰有个不同实根;
⑤存在实数,使得该方程恰有个不同实根.
其中正确的命题的个数是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知函数 ( x R ,且 e 为自然对数的底数).
⑴ 判断函数 f x 的单调性与奇偶性;
⑵是否存在实数 t ,使不等式对一切的 x R 都成立?若存在,求出 t 的值,若 不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄金分割起源于公元前世纪古希腊的毕达哥拉斯学派,公元前世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,公元前年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,把称为黄金分割数. 已知双曲线的实轴长与焦距的比值恰好是黄金分割数,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与轴交于点,与曲线交于点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为,乙每次投中的概率为,每人分别进行三次投篮.
(I)记甲投中的次数为,求的分布列及数学期望;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投进2次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲者都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷分数情况如下表:
用分层抽样的方法从这一天的所有问卷中抽取300份进行统计,结果如下表:
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出5人进行家访,求这5人中选择的是理综讲座的人数的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com