精英家教网 > 高中数学 > 题目详情
(本大题9分)袋中有2个红球,n个白球,各球除颜色外均相同.已知从袋中摸出2个球均为白球的概率为,(Ⅰ)求n;(Ⅱ)从袋中不放回的依次摸出三个球,记ξ为相邻两次摸出的球不同色的次数(例如:若取出的球依次为红球、白球、白球,则ξ=1),求随机变量ξ的分布列及其数学期望Eξ.
(1)n=4
(2)
P(=   P(=      Eξ=
(I)由于每个球被摸到的机会是均等的,故可用古典概型的概率公式解答.
(II)ξ为相邻两次摸出的球不同色的次数,则随机变量ξ的取值为0,1,2,利用古典概型的概率公式求出相应的概率,进而可得ξ的分布列及其数学期望Eξ.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.
(Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率;
(Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)某位收藏爱好者鉴定一件物品时,将正品错误地鉴定为赝品的概率为,将赝品错误地鉴定为正品的概率为,已知一批物品共有4件,其中正品3件,赝品1件.(1)求该收藏爱好者的鉴定结果为正品2件,赝品2件的概率;(2)求该收藏爱好者的鉴定结果中正品数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一厂家向用户提供的一箱产品共10件,其中有1件次品. 用户先对产品进行随机抽检以决定是否接受. 抽检规则如下:至多抽检3次,每次抽检一件产品(抽检后不放回),只要检验到次品就停止继续抽检,并拒收这箱产品;若3次都没有检验到次品,则接受这箱产品,按上述规则,该用户抽检次数的数学期望是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某射手射击所得环数的分布列如下:

7
8
9
10
P
x
0.1
0.3
y
已知的期望,则y的值为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中有放回地先后抽取两张卡片,并设它们的标号分别为x,y,记ξ=|x-2|+|y-x|.
(1)求随机变量ξ的范围;(2)分别求出ξ取不同值时的概率;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某班同学利用寒假在三个小区进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这两族人数占各自小区总人数的比例如下:

(1)从三个社区中各选一人,求恰好有2人是低碳族的概率;
(2)在B小区中随机选择20户,从中抽取的3户中“非低碳族”数量为X,求X的分布列和期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

招聘会上,某公司决定先试用后再聘用小强,该公司的甲、乙两个部门各有4个不同岗位.
(Ⅰ)公司随机安排小强在这两个部门中的3个岗位上进行试用,求小强试用的3个岗位中恰有2个在甲部门的概率;
(Ⅱ)经试用,甲、乙两个部门都愿意聘用他.据估计,小强可能获得的岗位月工资及相应概率如下表所示:
甲部门不同岗位月工资(元)
2200
2400
2600
2800
获得相应岗位的概率
0.4
0.3
0.2
0.1
 
乙部门不同岗位月工资(元)
2000
2400
2800
3200
获得相应岗位的概率
0.4
0.3
0.2
0.1
 
求甲、乙两部门月岗位工资的期望与方差,据此请帮助小强选择一个部门,并说明理由.

查看答案和解析>>

同步练习册答案