ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ùΪÕýÊýµÄµÈ²îÊýÁУ®
£¨1£©Èôa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÊýÁÐ{an}µÄÇ°nºÍΪSn£¬Éèbn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
£¬Èô¶ÔÈÎÒâµÄn¡Ê¦µ£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬ÇóʵÊýkµÄ×îСֵ£»
£¨3£©ÈôÊýÁÐ{an}ÖÐÓÐÁ½Ïî¿ÉÒÔ±íʾΪij¸öÕûÊýc£¨c£¾1£©µÄ²»Í¬´ÎÃÝ£¬ÇóÖ¤£ºÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃa32=a2£¨a4+1£©£¬d£¾0£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽan=2n£®
£¨2£©ÓÉSn=n£¨n+1£©£¬µÃbn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
=
1
2n+
1
n
+3
£¬ÒªÊ¹¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬Ðèʹk¡Ý[bn]max=
1
6
£¬ÓÉ´ËÄÜÇó³öʵÊýkµÄ×îСֵ£®10·Ö£©
£¨3£©Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬ÓÉ´ËÄÜÖ¤Ã÷ÊýÁÐ{an}ÖдæÔÚÎÞÇî¶àÏî¹¹³ÉµÈ±ÈÊýÁУ®
½â´ð£º £¨1£©½â£ºÒòΪa1=2£¬ÇÒa2£¬a3£¬a4+1³ÉµÈ±ÈÊýÁУ¬
ËùÒÔa1=2£¬a32=a2£¨a4+1£©£¬ÓÖÒòΪ{an}ÊÇÕýÏîµÈ²îÊýÁУ¬¹Êd£¾0
ËùÒÔ£¨2+2d£©2=£¨2+d£©£¨3+3d£©£¬µÃd=2»òd=1£¨ÉáÈ¥£©£¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽan=2n£®¡­£¨4·Ö£©
£¨2£©½â£ºÒòΪSn=n£¨n+1£©£¬
bn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
=
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+¡­+
1
2n(2n+1)

=
1
n+1
-
1
n+2
+
1
n+2
-
1
n+3
+¡­+
1
2n
-
1
2n+1

=
1
n+1
-
1
2n

=
n
2n2+3n+1

=
1
2n+
1
n
+3
£¬
Áîf(x)=2x+
1
x
£¨x¡Ý1£©£¬Ôòf¡ä£¨x£©=2x-
1
x2
£¬µ±xx¡Ý1ʱ£¬f¡ä£¨x£©£¾0ºã³ÉÁ¢£¬
ËùÒÔf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¹Êµ±x=1ʱ£¬[f£¨x£©]min=f£¨1£©=3£¬¼´µ±n=1ʱ£¬[bn]max=
1
6
£¬
Ҫʹ¶ÔÈÎÒâµÄÕýÕûÊýn£¬²»µÈʽbn¡Ükºã³ÉÁ¢£¬
ÔòÐëʹk¡Ý[bn]max=
1
6
£¬ËùÒÔʵÊýkµÄ×îСֵΪ
1
6
£®¡­£¨10·Ö£©
£¨3£©Ö¤Ã÷£ºÒòΪÕâ¸öÊýÁеÄËùÓÐÏÊÇÕýÊý£¬²¢ÇÒ²»ÏàµÈ£¬ËùÒÔd£¾0£¬
Éècr=ai£¬cs=aj£¬ÆäÖÐai£¬aj ÊÇÊýÁеÄÏaÊÇ´óÓÚ1µÄÕûÊý£¬r£¼s£¬i£¼j£¬
Áît=s-r£¬Ôòcs-cr=cS-cr=cr£¨ct-1£©£¬
¹Êcs-cr=aj-aiÊÇdµÄÕûÊý±¶£¬ÊÇcµÄr+kt´ÎÃÝcc+kl£¬
ËùÒÔcr+kl-cr=cr£¨ckt-1£©=cr£¨ct-1£©£¨c£¨k-l£©t+k+1£©£¬ÓÒ±ßÊÇdµÄÕûÊý±¶£®
ËùÓÐcr+ktÕâÖÖÐÎʽÊÇÊýÁÐ{an}ÖÐijһÏ
Òò´ËÓеȱÈÊýÁÐ{bn}£¬ÆäÖÐb1=cr£¬q=ct=c5-r£®    ¡­£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²éʵÊýµÄ×îСֵµÄÇ󷨣¬¿¼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬½âÌâҪעÒâ²»µÈʽÐÔÖʺÍÊýÁÐ֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãA£¨2£¬0£©¡¢B£¨0£¬2£©¡¢C£¨cos¦Á£¬sin¦Á£©£¬OΪ×ø±êÔ­µã£¬ÇÒ0£¼¦Á£¼¦Ð£®
£¨1£©Èô|
OA
+
OC
|=
7
£¬Çó
OC
µÄ×ø±ê£»
£¨2£©Èô
AC
¡Í
BC
£¬Çótan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©ÊǶ¨ÒåÔÚ£¨-¡Þ£¬+¡Þ£©ÉϿɵ¼º¯ÊýÇÒÂú×ãxf'£¨x£©+f£¨x£©£¾0¶ÔÈÎÒâµÄÕýÊýa£¬b£¬Èôa£¾bÔòÏÂÁв»µÈʽºã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A¡¢
f(b)
b
£¾
f(a)
a
B¡¢
f(b)
b
£¼
f(a)
a
C¡¢
f(b)
a
£¾
f(a)
b
D¡¢
f(b)
a
£¼
f(a)
b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬ADΪBC±ßÉϵÄÖÐÏߣ¬AB=2
5
£¬BD=2
2
£¬AD=2£¬Ôò¡÷ADCµÄÃæ»ýS¡÷ADC=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ä³ÐËȤС×é²âµÃÁâÐÎÑøÖ³ÇøABCDµÄ¹Ì¶¨Í¶Ê³µãAµ½Á½ÌõƽÐкӰ¶Ïßl1¡¢l2µÄ¾àÀë·Ö±ðΪ4Ãס¢8Ã×£¬ºÓ°¶Ïßl1Óë¸ÃÑøÖ³ÇøµÄ×î½üµãDµÄ¾àÀëΪ1Ã×£¬l2Óë¸ÃÑøÖ³ÇøµÄ×î½üµãBµÄ¾àÀëΪ2Ã×£®
£¨1£©Èçͼ¼×£¬ÑøÖ³ÇøÔÚͶʳµãAµÄÓҲ࣬Èô¸ÃС×é²âµÃ¡ÏBAD=60¡ã£¬Çë¾Ý´ËËã³öÑøÖ³ÇøµÄÃæ»ýS£¬²¢Çó³öÖ±ÏßADÓëÖ±Ïßl1Ëù³É½ÇµÄÕýÇÐÖµ£»
£¨2£©ÈçͼÒÒ£¬ÑøÖ³ÇøÔÚͶʳµãAµÄÁ½²à£¬ÊÔÇóÑøÖ³ÇøÃæ»ýSµÄ×îСֵ£¬²¢Çó³öÈ¡µÃ×îСֵʱ¡ÏBADµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬PB¡ÍBC£¬PD¡ÍCD£¬EÊDzàÀâPDµÄÖе㣮
£¨I£©ÇóÖ¤£ºPB¡ÎƽÃæACE£»
£¨¢ò£©ÇóÖ¤£ºPA¡ÍƽÃæABCD£»
£¨¢ó£©ÈôPA=2£¬ÇóÈýÀâ׶P-ABEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ë«ÇúÏß
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©ÓëÖ±Ïßy=aÏཻËùµÃµÄÏ߶γ¤Îª2b£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂʵÄƽ·½Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ABCDÓëABEFÊÇÈ«µÈµÄÖ±½ÇÌÝÐΣ¬AB¡ÍAD£¬µ×ÃæËıßÐÎADGFΪÁâÐΣ¬¶þÃæ½ÇD-AB-F=1200£¬AD=2BC=4£¬AB=2£¬
£¨1£©ÇóÖ¤£ºFD¡ÍBG
£¨2£©ÇóÖ¤£ºCE¡ÎDF
£¨3£©ÇóµãAµ½ÃæCEGµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖÐÉèÈñ½Ç¦ÁµÄʼ±ßÓëxÖáµÄ·Ç¸º°ëÖáÖغϣ¬ÖÕ±ßÓ뵥λԲ½»ÓÚµãP£¨x1£¬y1£©£¬½«ÉäÏßOPÈÆ×ø±êÔ­µãO°´ÄæʱÕë·½ÏòÐýת
¦Ð
2
ºóÓ뵥λԲ½»ÓÚµãQ£¨x2£¬y2£©¼Çf£¨¦Á£©=y1+y2
£¨1£©Çóº¯Êýf£¨¦Á£©µÄÖµÓò£»
£¨2£©Éè¡÷ABCµÄ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬Èôf£¨C£©=
2
£¬ÇÒa=
2
£¬c=1£¬Çób£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸