¾«Ó¢¼Ò½ÌÍøÒÑÖªÅ×ÎïÏßy2=2x£®
£¨1£©ÔÚÅ×ÎïÏßÉÏÈÎÈ¡¶þµãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¾­¹ýÏ߶ÎP1P2µÄÖеã×÷Ö±ÏßƽÐÐÓÚÅ×ÎïÏßµÄÖᣬºÍÅ×ÎïÏß½»ÓÚµãP3£¬Ö¤Ã÷¡÷P1P2P3µÄÃæ»ýΪ
116
|y1-y2|3
£»
£¨2£©¾­¹ýÏ߶ÎP1P3¡¢P2P3µÄÖеã·Ö±ð×÷Ö±ÏßƽÐÐÓÚÅ×ÎïÏßµÄÖᣬÓëÅ×ÎïÏßÒÀ´Î½»ÓÚQ1¡¢Q2£¬ÊÔ½«¡÷P1P3Q1Óë¡÷P2P3Q2µÄÃæ»ýºÍÓÃy1£¬y2±íʾ³öÀ´£»
£¨3£©·ÂÕÕ£¨2£©ÓÖ¿É×ö³öËĸö¸üСµÄÈý½ÇÐΣ¬Èç´Ë¼ÌÐøÏÂÈ¥¿ÉÒÔ×öһϵÁеÄÈý½ÇÐΣ¬ÓÉ´ËÉè·¨Çó³öÏ߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ý£®
·ÖÎö£º£¨1£©¸ù¾ÝP1ºÍP2µÄ×ø±ê¿É±íʾ³öP1P2µÄÖеãµÄ×ø±ê£¬½ø¶øÇóµÃP3µÄºá×ø±êºÍ×Ý×ø±ê£®´úÈë¡÷P1P2P3µÄÃæ»ý±í´ïʽ£¬»¯¼òÕûÀí¼´¿É£®
£¨2£©¸ù¾ÝP1ºÍP3µÄ×ø±ê¿É±íʾ³öP1P3µÄÖеãµÄ×ø±ê£¬¿ÉÇó³öµãQ1µÄºá¡¢×Ý×ø±êºÍµãQ2µÄºá¡¢×Ý×ø±ê£¬ÔÙÓÉÐÐÁÐʽÇóÃæ»ýµÄ·½·¨Çó³öÃæ»ý£®
£¨3£©¸ù¾ÝÏ߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ýµÈÓÚS¡÷p1p2p3 +£¨S¡÷PQ2P3+s¡÷p3Q2p2 £©¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£º£¨1£©¡ßP1µÄ×ø±êΪ£¨x1£¬y1£©£¬P2µÄ×ø±êΪ£¨x2£¬y2£©£¬
¡àP1P2µÄÖеãΪM1(
x1+x2
2
£¬
y1+y2
2
)

µãP3µÄºá×ø±êx=
y2
2
=
(y1+y2)2
8
£¬×Ý×ø±êy=
y1+y2
2

¡÷P1P2P3µÄÃæ»ý=
1
2
.
x1y11
x2y21
(y1+y2)2
8
y1+y2
2
1
.
µÄ¾ø¶ÔÖµ
=
1
2
|x1y2-x2y1+
x2-x1
2
(y1+y2)+
y1-y2
8
(y1+y2)2|

=
1
2
|
y12y2
2
-
y1y22
2
+
y22-y12
2
(y1+y2)+
y1-y2
8
(y1+y2)2|

=
1
16
|y1-y2|•|4y1y2-2(y1+y2)2+(y1+y2)2|

=
1
16
|y1-y2|•|-(y1-y2)2|

=
1
16
|y1 -y2|3
£®

£¨2£©¡ßP1µÄ×ø±êΪ£¨x1£¬y1£©£¬
P3µÄ×ø±êΪ(
(y1+y2)2
8
£¬
y1+y2
2
)
£¬
¡àP1P3µÄÖеãΪM2(
5y12+2y1y2+y22
16
£¬
3y1+y2
4
)
£¬
µãQ1µÄºá×ø±êx=
y2
2
=
(3y1+y2)2
32
£¬×Ý×ø±êy=
3y1+y2
4
.

ͬÀí£¬µãQ2µÄºá×ø±êx=
(y1+3y2)2
32
£¬×Ý×ø±êy=
y1+3y2
4
.

¡÷P1P3Q1µÄÃæ»ý+¡÷P2P3Q2µÄÃæ»ý
=
1
2
.
x1y11
(3y1+y2)2
32
3y1+y2
4
1
(y1+y2)2
8
y1+y2
2
1
.
µÄ¾ø¶ÔÖµ+
1
2
.
(y1+y2)2
8
y1+y2
2
1
(y1+3y2)2
32
y1+3y2
4
1
x2y21
.
µÄ¾ø¶ÔÖµ
=
1
16
|y22[2(y1+y2)-(3y1+y2)]+
(y1+y2)(3y1+y2)
8
[2(y1+y2)-(3y1+y2)]
+
y2
4
[(3y1+y2)2-4(y1+y2)2]|
+
1
16
|y22[2(y1+y2)-(y1+3y2)]+
(y1+y2)(y1+3y2)
8
[2(y1+y2)-(y1+3y2)]
+
y2
4
[(y1+3y2)2-4(y1+y2)2]|

=
1
128
|y2-y1|•|(y1-y2)2|+
1
128
|y1
-y2|•|£¨y2-y1£©2|
=
1
64
|y1-y2|3
£®

£¨3£©Ï߶ÎP1P2ÓëÅ×ÎïÏßËùΧ³ÉµÄͼÐεÄÃæ»ý
S=S¡÷p1p2p3 +£¨S¡÷PQ2P3+s¡÷p3Q2p2 £©
=
1
16
|y1-y2|3+
1
64
|y1-y2|3+
1
256
|y1-y2|3

=
1
16
|y1-y2|3
1-
1
4
=
1
12
|y1-y2|3
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵĻù±¾ÐÔÖʺÍÓÃÐÐÁÐʽµÄ·½·¨ÇóÃæ»ý£®¿¼²é¼ÆËãÄÜÁ¦ºÍ×ÛºÏÔËÓÃÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=2x£¬ÉèµãAµÄ×ø±êΪ£¨
2
3
£¬0£©£¬ÔòÅ×ÎïÏßÉϾàµãA×î½üµÄµãPµÄ×ø±êΪ£¨¡¡¡¡£©
A¡¢£¨0£¬0£©
B¡¢£¨0£¬1£©
C¡¢£¨1£¬0£©
D¡¢£¨-2£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=2x£¬ÉèA£¬BÊÇÅ×ÎïÏßÉϲ»ÖغϵÄÁ½µã£¬ÇÒ
OA
¡Í
OB
£¬
OM
=
OA
+
OB
£¬OΪ×ø±êÔ­µã£®
£¨1£©Èô|
OA
|=|
OB
|
£¬ÇóµãMµÄ×ø±ê£»
£¨2£©Ç󶯵ãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=2x£¬¹ýÅ×ÎïÏߵĽ¹µãFµÄÖ±ÏßÓëÅ×ÎïÏßÏཻÓÚA¡¢BÁ½µã£¬×ÔA¡¢BÏò×¼Ïß×÷´¹Ïߣ¬´¹×ã·Ö±ðΪA1¡¢A2£¬A1F=3£¬A2F=2£¬ÔòA1A2=
13
13
£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=2x£¬
£¨1£©ÉèµãAµÄ×ø±êΪ(
23
£¬0)
£¬ÇóÅ×ÎïÏßÉϾàÀëµãA×î½üµÄµãPµÄ×ø±ê¼°ÏàÓ¦µÄ¾àÀë|PA|£»
£¨2£©ÔÚÅ×ÎïÏßÉÏÇóÒ»µãP£¬Ê¹Pµ½Ö±Ïßx-y+3=0µÄ¾àÀë×î¶Ì£¬²¢Çó³ö¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸