精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=sin(2x-$\frac{π}{6}$)(0≤x≤$\frac{π}{2}$),则f(x)的单调增区间是[0,$\frac{π}{3}$].

分析 由条件利用正弦函数的单调性求得f(x)的增区间,再根据0≤x≤$\frac{π}{2}$,得出结论.

解答 解:对于函数f(x)=sin(2x-$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,
求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,可得函数的增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
再根据0≤x≤$\frac{π}{2}$,可得函数f(x)的增区间为[0,$\frac{π}{3}$],
故答案为:[0,$\frac{π}{3}$].

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.化简:$\frac{{x}^{-2}+{y}^{-2}}{{x}^{-\frac{2}{3}}+{y}^{-\frac{2}{3}}}$-$\frac{{x}^{-2}-{y}^{-2}}{{x}^{-\frac{2}{3}}-{y}^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的最大值和最小值.
(1)y=$\sqrt{1-\frac{1}{2}sinx}$;
(2)y=3sin(3x+$\frac{π}{4}$)+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=(m-2)x${\;}^{lo{g}_{\sqrt{2}}({m}^{2}+1)}$是幂函数,则f($\frac{1}{3}$)=$\frac{1}{9}•{3}^{-2lo{g}_{2}5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若x>0,求f(x)=4x+$\frac{9}{x}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知i是虚数单位,若|a-2+$\frac{4+3i}{1+2i}$|=$\sqrt{3}a$,则实数a等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(x-b)(其中a,b为常数,a>0且a≠1)的图象经过两点M(3,0),N(6,1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数g(x)=($\frac{a}{b}$)2x-6($\frac{a}{b}$)x+5,x∈[1,3],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如果关于x的方程x2+ax+b=0的两个实数根之比为4:5,方程的判别式的值为3,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知集合A={x|x2-(4m+6)x+4m2=0},B={0,$\frac{1}{2}$,$\frac{3}{2}$,6},若A⊆B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案