精英家教网 > 高中数学 > 题目详情
20.下列直线中,与直线2x+y+1=0平行且与圆x2+y2=5相切的是(  )
A.2x+y+5=0B.x-2y+5=0C.$2x+y+5\sqrt{5}=0$D.$x-2y+5\sqrt{5}=0$

分析 设直线方程为2x+y+c=0,圆心到直线的距离d=$\frac{|c|}{\sqrt{5}}$=$\sqrt{5}$,求出c,可得结论.

解答 解:设直线方程为2x+y+c=0,圆心到直线的距离d=$\frac{|c|}{\sqrt{5}}$=$\sqrt{5}$,
∴c=±5,
故选A.

点评 本题考查直线方程,考查直线与圆的位置关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,x3-3x>0”的否定为(  )
A.?x∈R,x3-3x≤0B.?x∈R,x3-3x<0C.?x∈R,x3-3x≤0D.?x∈R,x3-3x>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆(x-1)2+y2=1的圆心和半径分别为(  )
A.(0,1),1B.(0,-1),1C.(-1,0),1D.(1,0),1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的焦点在x轴上,焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线x-2y+1=0平行,则双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l过坐标原点O,圆C的方程为x2+y2-6y+4=0.
(Ⅰ)当直线l的斜率为$\sqrt{2}$时,求l与圆C相交所得的弦长;
(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面ABCD中,AB⊥平面ADE,CD⊥平面ADE,△ADE是等边三角形,AD=DC=2AB=2,F,G分别为AD,DE的中点.
(Ⅰ)求证:EF⊥平面ABCD;
(Ⅱ)求四棱锥E-ABCD的体积;
(Ⅲ)判断直线AG与平面BCE的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=e2x+x2,则f'(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.运动员小王在一个如图所示的半圆形水域(O为圆心,AB是半圆的直径)进行体育训练,小王先从点A出发,沿着线段AP游泳至半圆上某点P处,再从点P沿着弧PB跑步至点B处,最后沿着线段BA骑自行车回到点A处,本次训练结束.已知OA=1500m,小王游泳、跑步、骑自行车的平均速度分别为2m/s,4m/s,10m/s,设∠PAO=θrad.
(1)若$θ=\frac{π}{3}$,求弧PB的长度;
(2)试将小王本次训练的时间t表示为θ的函数t(θ),并写出θ的范围;
(3)请判断小王本次训练时间能否超过40分钟,并说明理由.
(参考公式:弧长l=rα,其中r为扇形半径,α为扇形圆心角.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.经过点$({\frac{1}{2},\frac{{\sqrt{3}}}{2}})$的圆x2+y2=1的切线方程是(  )
A.$x+\sqrt{3}y=2$B.$\sqrt{3}x+y=2$C.$x+\sqrt{3}y=1$D.$\sqrt{3}x+y=1$

查看答案和解析>>

同步练习册答案