精英家教网 > 高中数学 > 题目详情

【题目】如图,以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系,点在线段上,点在线段.

1)当,且点关于轴的对称点为点时,求的长度;

2)当点是面对角线的中点,点在面对角线上运动时,探究的最小值.

【答案】12

【解析】

1)以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系,推导出,由此能求出

2)当点是面对角线中点时,点,点在面对角线上运动,设点,则,由此能求出当时,取得最小值为,此时点

1)以棱长为1的正方体的三条棱所在直线为坐标轴,建立空间直角坐标系

在线段上,点在线段上.

由题意知点

时,

2)当点是面对角线中点时,点

在面对角线上运动,设点

时,取得最小值为,此时点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P在曲线x2+y2=1上运动,过点Px轴的垂线,垂足为Q,动点M满足.

1)求动点M的轨迹方程;

2)点AB在直线xy4=0上,且AB=4,求△MAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形,,平面平面,点上一点.

(1)若平面,求证:点中点;

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆Cab0)的右焦点为F,椭圆C上的两点AB关于原点对称,且满足|FB|≤|FA|≤2|FB|,则椭圆C的离心率的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区某月1日至24日连续24天的空气质量指数,根据得到的数据绘制出如图所示的折线图,则下列说法错误的是( )

A. 该地区在该月2日空气质量最好

B. 该地区在该月24日空气质量最差

C. 该地区从该月7日到12日持续增大

D. 该地区的空气质量指数与这段日期成负相关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数mR

1)讨论fx)的单调性;

2)若m∈(-10),证明:对任意的x1x2[11-m]4fx1+x25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知直线2xy﹣1=0与直线x﹣2y+1=0交于点P

求过点P且平行于直线3x+4y﹣15=0的直线的方程;(结果写成直线方程的一般式)

求过点P并且在两坐标轴上截距相等的直线方程(结果写成直线方程的一般式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个人排成一排,在下列情况下,各有多少种不同排法?

1)甲不在两端;

2)甲、乙、丙三个必须在一起;

3)甲、乙必须在一起,且甲、乙都不能与丙相邻.

查看答案和解析>>

同步练习册答案