精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

(1);(2);(3)证明过程详见解析.

解析试题分析:本题考查椭圆的标准方程和几何性质、直线方程、韦达定理等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,由长轴长得出的值,再由离心率得出的值,再计算出的值,从而得到椭圆的标准方程;第二问,由于直线与椭圆相交,所以列出方程组,经过消参,得到关于的方程,因为直线与椭圆有2个交点,所以方程有2个实根,所以方程的判别式大于0,解出的取值范围;第三问,将结论转化为证明,写出点坐标,利用第二问的关于的方程,用韦达定理写出两根之和、两根之积,先用两点的斜率公式列出的斜率,再通分,将上述两根之和两根之积代入化简直到等于0为止.
试题解析:(Ⅰ)由题意知,,又因为,解得
故椭圆方程为.                        4分
(Ⅱ)将代入并整理得
,解得.      7分
(Ⅲ)设直线的斜率分别为,只要证明.

.    9分

分子


所以直线的斜率互为相反数.     14分
考点:1.椭圆的标准方程;2.直线与椭圆的位置关系;3.斜率公式;4.韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线关于轴对称,它的顶点在坐标原点,点P(1,2),,均在抛物线上.

(1)求该抛物线方程;
(2)若AB的中点坐标为,求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求·的值;
(2)如果·=-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率为,右准线方程为,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为。若,求直线的倾斜角。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)求以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知抛物线的焦点坐标为,过的直线交抛物线两点,直线分别与直线相交于两点.

(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.

查看答案和解析>>

同步练习册答案