已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.
(1);(2);(3)证明过程详见解析.
解析试题分析:本题考查椭圆的标准方程和几何性质、直线方程、韦达定理等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,由长轴长得出的值,再由离心率得出的值,再计算出的值,从而得到椭圆的标准方程;第二问,由于直线与椭圆相交,所以列出方程组,经过消参,得到关于的方程,因为直线与椭圆有2个交点,所以方程有2个实根,所以方程的判别式大于0,解出的取值范围;第三问,将结论转化为证明,写出点坐标,利用第二问的关于的方程,用韦达定理写出两根之和、两根之积,先用两点的斜率公式列出的斜率,再通分,将上述两根之和两根之积代入化简直到等于0为止.
试题解析:(Ⅰ)由题意知,,又因为,解得
故椭圆方程为. 4分
(Ⅱ)将代入并整理得,
,解得. 7分
(Ⅲ)设直线的斜率分别为和,只要证明.
设,
则,. 9分
分子
所以直线的斜率互为相反数. 14分
考点:1.椭圆的标准方程;2.直线与椭圆的位置关系;3.斜率公式;4.韦达定理.
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆于、两点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求·的值;
(2)如果·=-4,证明直线l必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的离心率为,右准线方程为,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为。若,求直线的倾斜角。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
矩形的中心在坐标原点,边与轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线与,与,与的交点依次为.
(1)求以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段的(等分点从左向右依次为,线段的等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com