精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ln(ex+e-x)+x2,则使得f(2x)>f(x+3)成立的x的取值范围是(  )
A.(-1,3)B.(-∞,-3)∪(3,+∞)C.(-3,3)D.(-∞,-1)∪(3,+∞)

分析 先求出${f}^{'}(x)=\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$+2x,再由f(x)为偶函数,且在(0,+∞)上单调递增,故f(2x)>f(x+3)等价于|2x|>|x+3|,解之即可求出使得f(2x)>f(x+3)成立的x的取值范围.

解答 解:∵函数f(x)=ln(ex+e-x)+x2
∴${f}^{'}(x)=\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$+2x,
当x=0时,f′(x)=0,f(x)取最小值,
当x>0时,f′(x)>0,f(x)单调递增,
当x<0时,f′(x)<0,f(x)单调递减,
∵f(x)=ln(ex+e-x)+x2是偶函数,且在(0,+∞)上单调递增,
∴f(2x)>f(x+3)等价于|2x|>|x+3|,
整理,得x2-2x-3>0,
解得x>3或x<-1,
∴使得f(2x)>f(x+3)成立的x的取值范围是(-∞,-1)∪(3,+∞).
故选:D.

点评 本题考查实数的取值范围的求不地,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.对武汉市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如表:
月收入(百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数3812421
(1)从这50人是否赞成“楼市限购政策”采取分层抽样,抽取一个容量为10的样本,问样本中赞成与不赞成“楼市限购政策”的人数各有多少名?
(2)根据以上统计数据填写下面2*2的列联表,并回答是否有95%的把握认为月收入以55百元为分界点对“楼市限购政策”的态度有差异?
月收入低于55百元人数月收入不低于55百元人数合计
赞成a=27b=330
不赞成c=13d=720
合计401040
(参考公式:${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P( K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在$(0\;,\;\frac{π}{2})$上的函数f(x),f'(x)是它的导函数,且恒有f(x)•tanx+f'(x)<0成立,则(  )
A.$\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$C.$f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$D.$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(a,b)=ax+by,如果1≤f(1,1)≤2,且-1≤f(1,-1)≤1,试求f(2,1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l:y=$\sqrt{3}$+1,则直线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于无穷数列{an},{bn},若bi=max{a1,a2,…,ai}-min{a1,a2,…,ak}(k=1,2,3,…),则称{bn}是{an}的“收缩数列”,其中max{a1,a2,…,ak},min{a1,a2,…,ak}分别表示a1,a2,…,ak中的最大数和最小数.
已知{an}为无穷数列,其前n项和为Sn,数列{bn}是{an}的“收缩数列”.
(1)若an=2n+1,求{bn}的前n项和;
(2)证明:{bn}的“收缩数列”仍是{bn};
(3)若S1+S2+…+Sn=$\frac{n(n+1)}{2}{a}_{1}+\frac{n(n-1)}{2}{b}_{n}$(n=1,2,3,…),求所有满足该条件的{an}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α、β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是(  )
A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m?α,n?α,l⊥n,则l⊥α
C.若m∥α,n⊥β且α⊥β,则m∥nD.若l⊥α且l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<2)\\ f(x-2),\;\;(x≥2)\end{array}$,则f(5)的值为(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3sin(100πt-$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.6$\sqrt{2}$B.3+3$\sqrt{2}$C.3$\sqrt{2}$D.3$\sqrt{5}$

查看答案和解析>>

同步练习册答案