【题目】设ω>0,函数y=2cos(ωx+ )﹣1的图象向右平移 个单位后与原图象重合,则ω的最小值是( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】若函数f(x)=sin(2x﹣ )的图象向左平移 个单位后,得到y=g(x)的图象,则下列说法错误的是( )
A.y=g(x)的最小正周期为π
B.y=g(x)的图象关于直线x= 对称
C.y=g(x)在[﹣ , ]上单调递增
D.y=g(x)的图象关于点( ,0)对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=e2x﹣x2﹣a.
(1)证明f(x)在(﹣∞,+∞)上为增函数;
(2)当a=1时,解不等式f[f(x)]>x;
(3)若f[f(x)﹣x2﹣2x]>f(x)在(0,+∞)上恒成立,求a的最大整数值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角梯形ABCD中,AB∥CD,AB⊥AD,AB=2CD=2AD=2.在等腰直角三角形CDE中,∠C=90°,点M,N分别为线段BC,CE上的动点,若 , 则 的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为 米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: (a>b>0)的左、右焦点分别为F1、F2 , 上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1恰好是线段QF2的中点.
(1)若过A、Q、F2三点的圆恰好与直线3x﹣4y﹣7=0相切,求椭圆C的方程;
(2)在(1)的条件下,B是椭圆C的左顶点,过点R( ,0)作与x轴不重合的直线l交椭圆C于E、F两点,直线BE、BF分别交直线x= 于M、N两点,若直线MR、NR的斜率分别为k1 , k2 , 试问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数在某一周期内的图像时,列表并填入的部分数据如下表:
| |||||
0 |
|
| |||
0 | 1 | 0 |
| 0 | |
0 | 0 | 0 |
(1)请写出上表的及函数的解析式;
(2)将函数的图像向右平移个单位,再将所得图像上各点的横坐标缩小为原来的,纵坐标不变,得到函数的图像,求的解析式及的单调递增区间;
(3)在(2)的条件下,若在上恰有奇数个零点,求实数与零点个数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com