精英家教网 > 高中数学 > 题目详情
平面四边形ABCD中,AB=
3
,AD=DC=CB=1,△ABD和△BCD的面积分别为S,T,则S2+T2的最大值是
7
8
7
8
分析:先利用余弦定理求出cosA和cosC的关系,再用含角A,C的面积公式求出S2+T2,进而转化为cosA的二次函数,即可求出最大值.
解答:解:由题意,S=
3
2
sinA,T=
1
2
sinC

BD2=4-2
3
cosA=2-2cosC

cosC=
3
cosA-1

∴S2+T2=
3
4
sin2A+
1
4
sin2C
=
3
4
sin2A+
1
4
[1-(
3
cosA-1)
2
 ]

=-
3
2
cos2A+
3
2
cosA+
3
4
=-
3
2
(cosA-
3
6
)
2
+
7
8

cosA=
3
6
时,S2+T2的最大值是
7
8

故答案为:
7
8
点评:本题以平面四边形为载体,考查余弦定理的运用,考查三角函数,解题的关键是转化为cosA的二次函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面四边形ABCD中,AB=13,三角形ABC的面积为S△ABC=25,cos∠DAC=
3
5
AB
AC
=120

求:(1)AC的长;(2)cos∠BAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图 I,平面四边形ABCD中,∠A=60°,∠ABC=150°,AB=AD=2BC=4,把△ABD沿直线BD折起,使得平面ABD⊥平面BCD,连接AC得到如图 II所示四面体A-BCD.设点O,E,F分别是BD,AB,AC的中点.连接CE,BF交于点G,连接OG.
(1)证明:OG⊥AC;
(2)求二面角B-AD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,若AB=2,CD=1,则(
AC
+
DB
)•(
AB
+
CD
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角.
(1)求证:AB⊥平面BCD
(2)求三棱锥D-ABC的体积
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,AB=BD=2CD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E为棱AD的中点.
(1)求证:DC⊥平面ABC;
(2)求BE与平面ABC所成角的正弦值大小.

查看答案和解析>>

同步练习册答案