精英家教网 > 高中数学 > 题目详情
已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=          
由题意画出图形,利用勾股定理求出PC的长.
解:根据题意画出图形,因为ABCD是正方形,PA垂直底面ABCD,

所以PA⊥AC,
AC=
PC=
故答案为:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点。
(1)求直线A1C与平面A1AB所成角的正弦值;
(2)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间,下列命题正确的是(  )
A.若直线∥平面,直线,则
 
B.若, 平面,则
 
C.若两平面=, ,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图6,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点,
(1)求证:平面
(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,已知正四棱锥S—ABCD侧棱长为,底面边长为,E是SA的中点,则异面直线BE与SC所成角的大小为                        (   )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2,M, N分别为PA, BC的中点.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)求MN与平面PAC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图正三棱锥中,分别是的中点,,且,则正三棱锥的体积是 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线,给出下列命题:
①若,则;     ②若
③若;      ④若
⑤若
其中正确命题的序号是_______________(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,点分别在线段上,且 .以下结论:①;②MN//平面;③MN与异面;④点到面的距离为;⑤若点分别为线段的中点,则由线确定的平面在正方体上的截面为等边三角形.其中有可能成立的结论为____________________.

查看答案和解析>>

同步练习册答案