精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,a,b,c为角A,B,C所对的边,且2cos2 +(cosB﹣ sinB)cosA=1.
(1)求角A的值;
(2)求f(x)=4cosxcos(x﹣A)在x∈[0, ]的值域.

【答案】
(1)解:∵2cos2 +(cosB﹣ sinB)cosA=1.

1+cosC+cosBcosA﹣ sinBcosA=1,

cosC+cosBcosA= sinBcosA,

﹣cos(A+B)+cosBcosA= sinBcosA,

﹣cosAcosB+sinAsinB+cosBcosA= sinBcosA,

sinAsinB= sinBcosA,

∵sinB≠0,

∴tanA=

∴由A∈(0,π),可得:A=


(2)解:∵f(x)=4cosxcos(x﹣ )=4cosx( cosx+ sinx)

=cos2x+ sin2x+1=2sin(2x+ )+1,

∵x∈[0, ],2x+ ∈[ ],

∴sin(2x+ )∈[﹣ ,1],

∴f(x)=2sin(2x+ )+1∈[0,3]


【解析】(1)利用三角函数恒等变换的应用化简已知等式可得sinAsinB= sinBcosA,由于sinB≠0,可求tanA= ,结合范围A∈(0,π),可得A的值.(2)利用三角函数恒等变换的应用化简可得f(x)=2sin(2x+ )+1,由x∈[0, ],可求2x+ ∈[ ],
利用正弦函数的图象和性质即可解得其值域
【考点精析】利用余弦定理的定义对题目进行判断即可得到答案,需要熟知余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】m是实数,,若函数为奇函数.

m的值;

用定义证明函数R上单调递增;

若不等式对任意恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1(a>0,b>0)的离心率为 ,其右焦点到直线2ax+by﹣ =0的距离为
(1)求椭圆C1的方程;
(2)过点P(0,﹣ )的直线l交椭圆C1于A,B两点.
①证明:线段AB的中点G恒在椭圆C2 + =1的内部;
②判断以AB为直径的圆是否恒过定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若分别是先后抛掷一枚骰子得到的点数,求对任意 恒成立的概率

(2)若是从区间任取的一个数 是从任取的一个数求函数的图像与轴有交点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网格纸的各小格都是边长为1的正方形,图中粗实线画出的是一个几何体的三视图,其中正视图是正三角形,则该几何体的外接球表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2012年中华人民共和国环境保护部批准《环境空气质量标准》为国家环境质量标准,该标准增设和调整了颗粒物、二氧化氮、铅、笨等的浓度限值,并从2016年1月1日起在全国实施.空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重,某市对市辖的某两个区加大了对空气质量的治理力度,从2015年11月1日起监测了100天的空气质量指数,并按照空气质量指数划分为:指标小于或等于115为通过,并引进项目投资.大于115为未通过,并进行治理.现统计如下.

空气质量指数

(0,35]

[35,75]

(75,115]

(115,150]

(150,250]

>250

空气质量类别

轻度污染

中度污染

重度污染

严重污染

甲区天数

13

20

42

20

3

2

乙区天数

8

32

40

16

2

2


(1)以频率值作为概率值,求甲区和乙区通过监测的概率;
(2)对于甲区,若通过,引进项目可增加税收40(百万元),若没通过监测,则治理花费5(百万元);对于乙,若通过,引进项目可增加税收50(百万元),若没通过监测,则治理花费10(百万元)..在(1)的前提下,记X为通过监测,引进项目增加的税收总额,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正整数,若它的每个质因数都至少是两重的(即每个质因数乘方次数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”.例如89就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 平面 .

求证:平面平面

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正数 满足 ,则 的最小值为( )

A. B. C. D.

【答案】A

【解析】正数 满足,

故答案为:A.

点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中。

型】单选题
束】
12

【题目】已知数列 为等差数列,若 ,且它的前 项和 有最大值,则使得 的最大值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案