精英家教网 > 高中数学 > 题目详情
19.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F分别为BC,PA的中点.
(1)求证:BF∥面PDE
(2)求点C到面PDE的距离.

分析 (1)取PD中点G,连结GF,由已知得四边形BEGF是平行四边形,从而BF∥EG,由此能证明BF∥面PDE.
(2)以A为原点,AD为x轴,在平面ABCD中过A作AD的垂线为y轴,以AP为z轴,建立空间直角坐标系,利用向量法能求出点C到面PDE的距离.

解答 (1)证明:取PD中点G,连结GF,
∵E,F分别为BC,PA的中点,底面ABCD是边长为2的菱形,
∴GF平行且等于BE,∴四边形BEGF是平行四边形,
∴BF∥EG,
∵BF?平面PDE,EG?平面PDE,
∴BF∥面PDE.
(2)解:以A为原点,AD为x轴,在平面ABCD中过A作AD的垂线为y轴,以AP为z轴,建立空间直角坐标系,
则P(0,0,$\sqrt{3}$),D(2,0,0),E(2,$\sqrt{3}$,0),C(3,$\sqrt{3}$,0),
$\overrightarrow{PD}$=(2,0,-$\sqrt{3}$),$\overrightarrow{PE}$=(2,$\sqrt{3}$,-$\sqrt{3}$),$\overrightarrow{PC}$=(3,$\sqrt{3}$,-$\sqrt{3}$),
设平面PDE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{2x-\sqrt{3}z=0}\\{2x+\sqrt{3}y-\sqrt{3}z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=($\sqrt{3},0,2$),
∴点C到面PDE的距离:d=$\frac{|3\sqrt{3}-2\sqrt{3}|}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$.

点评 本题考查线面平行的证明,考查点到平面的距离的求法,解题时要注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.给出下列结论:
(1)函数f(x)=tanx有无数个零点;
(2)集合A={x|y=2x+1},集合 B={x|y=x2+x+1}则A∩B={(0,1),(1,3)};
(3)函数$f(x)=\frac{1}{2}sinx+\frac{1}{2}|{sinx}|$的值域是[-1,1];
(4)函数$f(x)=2sin(2x+\frac{π}{3})$的图象的一个对称中心为$(\frac{π}{3},0)$;
(5)已知函数f(x)=2cosx,若存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为2π.
其中结论正确的序号是(1)(4)(把你认为结论正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点(1,2)和(-1,m)关于kx-y+3=0对称,则m+k=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=ex(2x-1)-ax+a(a∈R),e为自然对数的底数.
(1)当a=1时,求函数f(x)的单调区间;
(2)若存在实数x∈(1,+∞),满足f(x)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线方程为x2=2py,且过点(1,4),则抛物线的焦点坐标为(  )
A.(1,0)B.($\frac{1}{16}$,0)C.(0,$\frac{1}{16}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数F(x)=3[f(x-$\frac{π}{12}$)]2+mf(x-$\frac{π}{12}$)+2在区间[0,$\frac{π}{2}$]上有四个不同零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos60°的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线ax+2y-2=0与直线x+(a+1)y+1=0垂直,则a=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将cos2x+sin2x化为Asin(x+θ)的形式,若函数f(x)=Asin(x+θ),则其值域为[-$\sqrt{2}$$\sqrt{2}$].

查看答案和解析>>

同步练习册答案