精英家教网 > 高中数学 > 题目详情

【题目】已知,点

(1)求当时,点满足的概率

(2)求当时,点满足的概率

【答案】(1)满足的点所在的区域是以原点为中心,以坐标轴为对称轴,边长为4的正方形及其内部;满足的点所在的区域是以为圆心,以2为半径的圆及其内部,由几何概型的概率计算公式……6分

(2)满足题意的有(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2),(-1,-2),(-1, -1),(-1,0),(-1,1),(-1,2),(0,-2),(0,-1),(0,0),(0,1),(0,2),(1,-2),(1,-1),(1,0),(1,1),(1,2),(2,-2),(2,-1),(2,0),(2,1),(2,2),计25个,其中(0,2),(1,2),(2,2),(2,0),(2,1),(1,1),满足

【解析】略

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点E为正方形ABCD边CD上异于点C,D的动点,将ADE沿AE翻折成SAE,使得平面SAE平面ABCE,则下列说法中正确的有(

①存在点E使得直线SA平面SBC;

②平面SBC内存在直线与SA平行

③平面ABCE内存在直线与平面SAE平行;

④存在点E使得SEBA.

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业共有20条生产线,由于受生产能力和技术水平等因素的影响,会产生一定量的次品.根据经验知道,每台机器产生的次品数万件与每台机器的日产量万件之间满足关系:.已知每生产1万件合格的产品可以以盈利3万元,但每生产1万件次品将亏损1万元.

)试将该企业每天生产这种产品所获得的利润表示为的函数;

)当每台机器的日产量为多少时,该企业的利润最大,最大为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足

(Ⅰ)若数列是常数列,求的值;

(Ⅱ)当时,求证:

(Ⅲ)求最大的正数,使得对一切整数恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数,,在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.

1求曲线的普通方程,并将的方程化为极坐标方程;

2直线的极坐标方程为,其中满足,若曲线的公共点都在上,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,,动点满足.

(1)求动点的轨迹方程,并说明轨迹是什么曲线;

(2),点为动点的轨迹曲线上的任意一点,过点作圆:的切线,切点为.试探究平面内是否存在定点,使为定值,若存在,请求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球定点投篮训练中,规定每人最多投3次.在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在处的投中率,在处的投中率为.该同学选择先在处投一球,以后都在处投,且每次投篮都互不影响.用表示

该同学投篮训练结束后所得的总分,其分布列为:

0

2

3

4

5

0.03

(1)求的值;

(2)求随机变量的数学期望

(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为增强市民的环境保护意识, 面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取名按年龄分组: ,第2 ,第,第,第,得到的频率分布直方图如图所示,

1若从第组中用分层抽样的方法抽取名志愿者参与广场的宣传活动, 应从第组各抽取多少名志愿者?

21的条件下, 该县决定在这名志愿者中随机抽取名志愿者介绍宣传经验, 求第组至少有名志愿者被抽中的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC底面ABCD,且PC=2,E是侧棱PC上的动点

(1)求四棱锥P-ABCD的体积;

(2)证明:BDAE。

(3)求二面角P-BD-C的正切值。

查看答案和解析>>

同步练习册答案