精英家教网 > 高中数学 > 题目详情

【题目】近年来,在新高考改革中,打破文理分科的“”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定省规定:选考科目按考生成绩从高到低排列,按照占总体分别赋分分、分、分、分,为了让学生们体验赋分制计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如图所示,小明同学在这次考试中物理分,化学多分.

(1)采用赋分制后,求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.

【答案】(1)分;(2);(3).

【解析】

1)根据物理分判断所处的百分比,根据百分比确定分数;(2)先排除赋分分的分数,然后利用百分比计算赋分分的人数,结合数据,给出可能的取值;(3)采用列举法以及古典概型的概率计算公式来求解.

(1)∵

∴此次考试物理成绩落在内的频率依次为,频率之和为,且小明的物理成绩为分,大于分,处于前

∴小明物理成绩的最后得分为.

(2)因为名学生中,赋分分的有人,这六人成绩分别为;赋分分的有人,其中包含多分的共人,多分的有人,分数分别为;因为小明的化学成绩最后得分为分,且小明化学多分,所以小明的原始成绩的可能值为.

(3)记物理、化学、生物、历史、地理、政治依次为,小明的所有可能选法有

共10种,

其中包括化学的有共4种,

∵若小明必选物理,其他两科在剩下的五科中任选,所选科目包括化学的概率为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面分别是的中点.

)求证:平面平面

)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,函数

(Ⅰ)讨论函数的单调区间;

(Ⅱ)设定义在上的函数在点处的切线方程为,当时,若内恒成立,则称点为函数的“平衡点”.当时,试问函数是否存在“平衡点”?若存在,请求出“平衡点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知四边形BCDE为直角梯形,,且ABE的中点沿AD折到位置如图,连结PCPB构成一个四棱锥

求证

平面ABCD

求二面角的大小;

在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上满足,且.设,则当时,下列不等式成立的是( )

A. B. C. D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(Ⅰ)求曲线的普通方程和的直角坐标方程;

(Ⅱ)若相交于两点,设点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1xy+30l2x+y+10的交点为A,过A且与x轴和y轴都相切的圆的方程为_____,动点BC分别在l1l2上,且|BC|2,则过ABC三点的动圆扫过的区域的面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极标坐系中,已知圆的圆心,半径

(1)求圆的极坐标方程;

(2)若,直线的参数方程为t为参数),直线交圆两点,求弦长的取值范围.

查看答案和解析>>

同步练习册答案