精英家教网 > 高中数学 > 题目详情
16.已知直线3x+(1-a)y+1=0与直线x-y+2=0平行,则a的值为(  )
A.4B.-4C.2D.-2

分析 由直线的方程可得其斜率,由平行可得直线的斜率相等,解此方程可得.

解答 解:可得直线x-y+2=0的斜率为1,
由于直线平行,故有斜率相等,
故可得$\frac{3}{a-1}$=1,解得a=4
故选:A

点评 本题考查直线的一般式方程与直线的平行关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲:8281797895889384
乙:9295807583809085
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由;
(Ⅲ)若对甲同学在今后的3次测试成绩进行预测,记这3次成绩中高于80分的次数为ξ(将甲8次成绩中高于80分的频率视为概率),求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=($\frac{x-1}{x+1}$)2(x>1)
(1)求f(x)的反函数及其定义域;
(2)若不等式(1-$\sqrt{x}$)f-1(x)>a(a-$\sqrt{x}$)对区间x∈[$\frac{1}{4}$,$\frac{1}{2}$]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)满足:集合A={f(n)|n∈N*}中至少存在三个不同的数构成等差数列,则称函数f(x)是等差源函数.判断下列函数:
①y=log2x;
②y=2x
③y=$\frac{1}{x}$中,
所有的等差源函数的序号是(  )
A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,四边形ABCD为正方形,延长DC至E,使得CE=2DC,将四边形ABCD沿BC折起到A1BCD1的位置,使平面A1BCD1⊥平面BCE,如图2.

(I)求证:CE⊥平面A1BCD1
(II)求异面直线BD1与A1E所成角的大小;
(III)求平面BCE与平面A1ED1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲袋中有16个白球和17个黑球,乙袋中有31个白球,现每次任意从甲袋中摸出两个球,如果两球同色,则将这两球放进丙袋,并从乙袋中拿出一白球放回甲袋;如果两球不同色,则将白球放进丙袋,并把黑球放回甲袋.那么这样拿     次后,甲袋中只剩一个球,这个球的颜色是      (  )
A.16,黑色B.16,白色或黑色C.32,黑色D.32,白色

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.昌平区在滨河公园举办中学生冬季越野赛.按年龄段将参赛学生分为A,B,C三个组,各组人数如下表所示.组委会用分层抽样的方法从三个组中选出6名代表.
    组别AB    C
    人数100150    50
( I)  求A,B,C三个组各选出代表的个数;
( II) 若从选出的6名代表中随机抽出2人在越野赛闭幕式上发言,求这两人来自同一组的概率P1
( III)若从所有参赛的300名学生中随机抽取2人在越野赛闭幕式上发言,设这两人来自同一组的概率为P2,试判断P1与P2的大小关系(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E为棱PD的中点.
(Ⅰ)求证:CD⊥AE;
(Ⅱ)求证:平面PAB⊥平面PAD;
(Ⅲ)试判断PB与平面AEC是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点C的坐标为(4,0),A,B,是抛物线y2=4x上不同于原点O的相异的两个动点,且OA⊥OB.
(Ⅰ)求证:点A,B,C共线;
(Ⅱ)若$\overrightarrow{AQ}=λ\overrightarrow{QB},(λ∈R)$,当$\overrightarrow{OQ}•\overrightarrow{AB}=0$时,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案