精英家教网 > 高中数学 > 题目详情

如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC∥平面EBD,并证明.

答:点E的位置是棱SA的中点.
证明:取SA的中点E,连接EB,ED,AC,
设AC与BD的交点为O,连接EO.
∵四边形ABCD是平行四边形,
∴点O是AC的中点.
又E是SA的中点,∴OE是△SAC的中位线.
∴OE∥SC.
∵SC?平面EBD,OE?平面EBD,
∴SC∥平面EBD.
故E的位置为棱SA的中点.
分析:欲证SC∥平面EBD,根据直线与平面平行的判定定理可知只需证SC与平面EBD内一直线平行,取SA的中点E,连接EB,ED,AC,设AC与BD的交点为O,连接EO.根据中位线可知OE∥SC,而SC?平面EBD,OE?平面EBD,满足定理所需条件.
点评:本题主要考查了直线与平面平行的判定,应熟练记忆直线与平面平行的判定定理,属于探索性问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD的底面是边长为3的正方形,SD丄底面ABCD,SB=3
3
,点E、G分别在AB,SG 上,且AE=
1
3
AB  CG=
1
3
SC.
(1)证明平面BG∥平面SDE;
(2)求面SAD与面SBC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•醴陵市模拟)如图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,P为BC边的中点,AD=2,AB=1.SP与平面ABCD所成角为
π4
. 
(1)求证:平面SPD⊥平面SAP;
(2)求三棱锥S-APD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一点,且SE=2EC,SA=6,AB=2.
(1)求证:平面EBD⊥平面SAC;
(2)求三棱锥E-BCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)如图,四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面ABCD所成的角均为45°,AD∥BC,且AB=BC=2AD.
(1)求证:四边形ABCD是直角梯形;
(2)求异面直线SB与CD所成角的大小;
(3)求直线AC与平面SAB所成角的大小.

查看答案和解析>>

同步练习册答案