精英家教网 > 高中数学 > 题目详情

【题目】如图,菱形所在平面与所在平面垂直,且.

1)求证:

2)求点到平面的距离.

【答案】1)见解析;(2.

【解析】

1)作,垂足为,连接,证明出,可得出,从而得出,再结合,利用直线与平面垂直的判定定理可证明出平面,由此可证明出

2)由(1)得知为三棱锥的体积,由锥体的体积公式可求出三棱锥的体积,由以及,可得出,可计算出的面积,并设点到平面的距离为,由等体积法可计算出点到平面的距离.

1)作,垂足为,连接

,可得

所以

因为,所以平面,因为平面,所以

2)由(1)知,平面,所以是三棱锥的高,且

,得

所以的面积

三棱锥的体积

由(1)知,,又,所以

,可得

因为,所以的面积

设点到平面的距离为,则三棱锥的体积

,因此,点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,且.

1)求数列的通项公式;

2)若,数列的前项和为,求的取值范围;

3)若,从数列中抽出部分项(奇数项与偶数项均不少于两项),将抽出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为且满足:

(1)证明:是等比数列,并求数列的通项公式.

(2)设,若数列是等差数列,求实数的值;

(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则为异面直线; ②若,则

③若,则 ④若,则.

则上述命题中真命题的序号为(

A.①②B.③④C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的奇函数,满足,下面四个关于函数的说法:①存在实数,使关于的方程个不相等的实数根;②当时,恒有;③若当时,的最小值为,则;④若关于的方程的所有实数根之和为零,则.其中说法正确的有______.(将所有正确说法的标号填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,ADBCABBCBDDC,点EBC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AEACDE,得到如图2所示的几何体.

(Ⅰ)求证:AB⊥平面ADC

(Ⅱ)若AD=2,直线CA与平面ABD所成角的正弦值为,求二面角EADC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点为为它的中心,为双曲线右支上的一点,的内切圆圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若双曲线的离心率为,则( )

A.B.C.D.关系不确定

查看答案和解析>>

同步练习册答案