精英家教网 > 高中数学 > 题目详情
10.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为(  )
A.(x-1)2+y2=1B.x2+(y+1)2=1C.x2+(y-1)2=1D.(x+1)2+y2=1

分析 求出圆的圆心与半径,写出结果即可.

解答 解:圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,可得圆的圆心坐标(0,1),
圆的方程为:x2+(y-1)2=1.
故选:C,

点评 本题考查圆的方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若复数z=$\frac{2-i}{i^3}$(i是虚数单位),则z的共轭复数为(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.抛物线y2=8x上到其焦点F距离为4的点有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若曲线y2=2px(p>0)上只有一个点到其焦点的距离为1,则p的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=45°,AB=2,AD=$\sqrt{2}$,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE∥平面PDF;
(2)求证:平面PDF⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={1,2,3},N={2,3,4,5},那么M∩N=(  )
A.B.{1,4,5}C.{1,2,3,4,5}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=lg(x+1)+$\sqrt{3-x}$的定义域为(-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,点$A(1,\frac{{\sqrt{3}}}{2})$在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)设cn=(-1)n-1•λ•bn+2${\;}^{{a}_{n}}$(λ为非零实数,n为正整数),试确定实数λ的取值范围,使得对任意的正整数n,都有cn+1>cn恒成立.

查看答案和解析>>

同步练习册答案