(本小题12分)设直线相交于A、B两个不同的点,与x轴相交于点F。
(1)证明:;
(2)若F是椭圆的一个焦点,且,求椭圆的方程。
科目:高中数学 来源:2011届江西省重点中学联盟高三第一次联考数学文卷 题型:解答题
(本小题满分12分)
在直三棱柱中, AC=4,CB=2,AA1=2
,E、F分别是的中点。
(1)证明:平面平面;
(2)证明:平面ABE;
(3)设P是BE的中点,求三棱锥的体积。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年四川省成都市高新区高三2月月考理科数学试卷(解析版 题型:解答题
(本小题12分)在直三棱柱(侧棱垂直底面)中,,.
(Ⅰ)若异面直线与所成的角为,求棱柱的高;
(Ⅱ)设是的中点,与平面所成的角为,当棱柱的高变化时,求的最大值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年丹东市四校协作体高三摸底测试数学理(零诊) 题型:解答题
(本小题满分12分)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依次类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第行第个障碍物(从左至右)上顶点的概率为.
(Ⅰ)求,的值,并猜想的表达式(不必证明);
(Ⅱ)已知,设小球遇到第6行第个障碍物(从左至右)上顶点时,
得到的分数为,试求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年山东省济南市高三12月质量检测数学文卷 题型:解答题
(本小题满分12分)如图,AB为圆O的直
径,点E、F在圆O上,AB∥EF,矩形ABCD
所在的平面和圆O所在的平面垂直,且.
⑴求证:;
⑵设FC的中点为M,求证:;
⑶设平面CBF将几何体分成的两个锥体的体积分别为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com