精英家教网 > 高中数学 > 题目详情
5.已知tan$\frac{π}{6}$=$\frac{\sqrt{3}}{3}$,则tan(-$\frac{π}{6}$)的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

分析 由条件利用诱导公式化简所给式子的值,可得结果.

解答 解:tan(-$\frac{π}{6}$)=-tan$\frac{π}{6}$=-$\frac{\sqrt{3}}{3}$,
故选:D.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.△ABC的内切圆的半径为r,外接圆半径为R,则$\frac{r}{4R}$的值等于(  )
A.sin$\frac{A}{2}$sin$\frac{B}{2}$sin$\frac{C}{2}$B.cos$\frac{A}{2}$cos$\frac{B}{2}$cos$\frac{C}{2}$C.sin$\frac{A}{2}$cos$\frac{B}{2}$cos$\frac{C}{2}$D.sin$\frac{A}{2}$sin$\frac{B}{2}$cos$\frac{C}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sinα+cosα=$\frac{1}{3}$,α∈(0,π),那么sin2α,cos2α的值分别为-$\frac{8}{9}$;-$\frac{\sqrt{17}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$\overrightarrow{AB}$=(2,3),$\overrightarrow{BC}$=(-4,-5),则$\overrightarrow{AC}$=(  )
A.(2,2)B.(-2,-2)C.(-4,-6)D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,求
(1)(x+1)2+y2的最大值和最小值;
(2)$\frac{y+1}{x+2}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c.
(1)在△ABC中,S△ABC=$\frac{\sqrt{3}}{2}$,c=2,∠A=60°,求a,b;
(2)若a=ccosB,试确定△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是定义在R上的偶函数,且当x≥0时:f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,0≤x<1}\\{lnx,x≥1}\end{array}\right.$,若对任意的x∈[a,a+1],不等式f(2x)≤(x+a)恒成立,则实数a的最大值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知b=4$\sqrt{3}$,c=2,C=30°,则此三角形的解的情况是(  )
A.一解B.两解C.无解D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x+y+z=3,求(-x+y+z)3+(x-y+z)3+(x+y-z)3+24xyz的值.

查看答案和解析>>

同步练习册答案