精英家教网 > 高中数学 > 题目详情

【题目】已知函数是自然对数的底数).

(1)求函数的单调区间;

(2),当时,求函数的最大值;

(3),且,比较:.

【答案】(1)见解析;(2);(3).

【解析】试题分析:(1)求得函数的定义域和导数,由,即可求得函数的单调区间;

(2)代入的解析式,的奥的解析式,求得,利用导数得到函数的单调性,即可求解函数的最大值.

(3)把的大小转化为的大小,进而转化为的大小关系,即要比较的大小,进而比较的大小,构造新函数,利用导数求解新函数的单调性与最值,即可得到结论.

试题解析:

(1)的定义域为,且,

,

上单调递增,在上单调递减.

(2),

,

时,,,

时,,

上单调递增,在上单调递减.

.

(3), .

由(1)知 上单调递增,在上单调递减,且,

,要比较的大小,即要比较m与的大小,即要比较的大小,即要比较的大小,即要比较的大小,由于即要比较的大小,

恒成立

递增,恒成立,

恒成立,即,又因为,而f(X)在上单调递减,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某车间将名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的茎叶图如图,已知两组技工在单位时间内加工的合格零件的平均数都为.

(1)求的值;

(2)求甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;

(3)质检部门从该车间甲、乙两组技工中各随机抽取一名,对其加工的零件进行检测,若两人加工的合格零件个数之和大于,则称该车间“质量合格”,求该车间“质量合格”的概率.

附:方差,其中为数据的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公比为4的等比数列{bn}中,若Tn是数列{bn}的前n项积,则有仍成等比数列,且公比为4100;类比上述结论,在公差为3的等差数列{an}中,若Sn{an}的前n项和,则有________也成等差数列,该等差数列的公差为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中[x]表示不超过x的最大整数.设n∈N* , 定义函数fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn1(x))(n≥2),则下列说法正确的有 ①y= 的定义域为
②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;

④若集合M={x|f12(x)=x,x∈[0,2]},
则M中至少含有8个元素.(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的值域;
(2)已知锐角△ABC的两边长分别为函数f(x)的最大值与最小值,且△ABC的外接圆半径为 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线Γ由曲线C1 (a>b>0,y≤0)和曲线C2 (a>0,b>0,y>0)组成,其中点F1 , F2为曲线C1所在圆锥曲线的焦点,点F3 , F4为曲线C2所在圆锥曲线的焦点,
(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;
(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}首项a1=2,前n项和为Sn , 且满足2an+1+Sn=3(n∈N*),则满足 的所有n的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是___________

用一个平面截一个球,得到的截面是一个圆;

圆台的任意两条母线延长后一定交于一点;

有一个面为多边形,其余各面都是三角形的几何体叫做棱锥;

若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥;

用斜二测画法作出正三角形的直观图,则该直观图面积为原三角形面积的一半.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是

查看答案和解析>>

同步练习册答案